
M647 Spring 2023, Practice Problems for the Final Exam

The final exam for M647 will be Monday, May 8, 10:30 a.m. - 12:30 p.m. in Blocker 160 (the
usual classroom). The final will cover material from the second half of the semester: mod-
eling with ODE, including population dynamics, chemical reactions, Newtonian mechanics,
Lagrangian mechanics, and Hamiltonian mechanics; solving ODE in MATLAB, including
initial value problems, event location, boundary value problems, and parameter estimation;
modeling with PDE, including models in one and multiple space dimensions.

The exam will consist of two parts: Part 1 will not require MATLAB, while Part 2 will
require MATLAB. Students will have to turn in Part 1 before starting Part 2, but for Part
2 students will have access to all M-files we’ve used this semester, from both lecture and
homework. Students will be expected to access data files from the course web site.

Office hours the week before the exam will be as follows: Wednesday, May 3, 2:00 p.m. –
3:00 p.m.; Thursday, May 4, 3:30 p.m. – 4:30 p.m.; Friday, May 5, 2:00 p.m. – 3:00 p.m.

The problems below are intended to provide students with some additional practice on
modeling with PDE. They are not assigned to be turned in, and solutions are included.

Practice Problems

1. Consider a fluid flowing through a cylindrical pipe with constant cross section A, velocity
v(x, t), density ρ(x, t), specific internal energy e(x, t), temperature T (x, t), under pressure
p(x, t), and subject to viscous stress. (By specific internal energy, we mean internal energy
per unit mass. Internal energy arises from intermolecular collisions in the fluid, and should
be distinguished from the kinetic energy associated with the macroscopic fluid motion (i.e.,
1
2
mv2). Potential energy will not play a role in this problem.) By conserving energy, show

that [
ρ(
v2

2
+ e)

]
t
+
[
ρve+

1

2
ρv3 − κ(x)Tx + pv − µvvx

]
x

= 0, (1)

where κ is thermal conductivity divided by A and µ is the viscosity coefficient discussed in
class. This is called the Navier-Stokes energy equation.

Note. The energy density should be easy to identify. For the flux, consider each of the
following, which correspond respectively with terms in (1): internal energy, kinetic energy,
energy associated with heat transfer, energy associated with pressure, energy associated with
viscosity.

2. Consider a mixture with two components contained in a long cylinder, and let u(x, t)
denote the volumetric concentration of one of the components. Assuming that mass is
conserved, the concentration of the remaining component will be 1 − u. In 1958 John W.
Cahn and John Hilliard suggested that under certain conditions the energy associated with
such a mixture could be expressed as the functional

E[u] =

ˆ L

0

F (u) +
κ

2
u2
xdx,

1



where F denotes the bulk free energy density of the mixture (the free energy density, assuming
the entire mixture is homogeneously mixed with concentrations u and 1 − u), and κ

2
u2
x is a

measure of the energy associated with transitions from one concentration to another. The
flux associated with u is

J = −M ∂

∂x

δE

δu
,

where δE
δu

is defined so that

E ′[u]h =

ˆ L

0

δE

δu
h(x)dx,

for
h ∈ S0 := {h ∈ C2([0, L]) : h(0) = 0, h(L) = 0}.

Here, M is molecular mobility, and plays a role in this context similar to the role thermal
diffusivity K plays in heat transfer. Also, E ′[u]h denotes variational derivative, as discussed
in our section on Lagrangian mechanics. (We use J for the flux here both because it’s the
traditional letter in this context, and because I want to avoid confusion with the F (also
traditional) we’re using for bulk free energy density.) Compute δE

δu
and use it to write down

a PDE for u.

3. Suppose u(x, t) denotes traffic density (number of cars per unit length of road) along a
certain stretch of road. In class, we discussed models in which the traffic flux depends only
on traffic density u. One drawback of such models is that they do not capture a driver’s
reaction to what he sees ahead. For example, a driver who sees a higher density of traffic
ahead will often slow down, while a driver who sees a lower density of traffic ahead will often
speed up. Incorporate this idea to revise our model from class.

4. Suppose we have a dependent variable y(t) that we think should approach a target
function φ(t) as t increases. One simple way to model this qualitative behavior is to write
down the relaxation equation

dy

dt
= −1

τ
(y − φ(t)),

for some contant τ > 0.

a. Explain why we expect this equation to have the right qualitative behavior. Solve this
equation for y(t), and discuss the qualitative behavior of your solution if φ(t) is constant.

b. In Problem 3, we modeled the density u of traffic along a roadway with the equation

ut + f(u)x = µuxx.

Write down an expression for the traffic velocity associated with this model in terms of u
(and appropriate derivatives).

c. One criticism of the model from (b) is that it doesn’t take into account the delay required
for a driver to respond to surrounding road conditions. Use the idea of (a) to create a system
of two equations for u and v that qualitatively accounts for this delay.

5. Suppose ω(t) ⊂ R3 denotes an evolving region of fluid, and that ρ(~x, t) denotes the density
of the fluid at position ~x and time t, ~v(~x, t) denotes the velocity of the fluid at position ~x
and time t, and p(~x, t) denotes the pressure of the fluid at position ~x and time t.
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a. Show that
~v · (~vTD~v) = ~v · ((~v · ∇)~v).

Note. Here, ~v is regarded as a column vector, so ~vTD~v denotes multiplication of a row
vector by a 3× 3 Jacobian matrix.

b. The kinetic energy associated with ω(t) can be computed as

K(t) =
1

2

ˆ
ω(t)

ρ(~x, t)|~v(~x, t)|2dV.

Show that for an inviscid fluid with no body forces

K ′(t) = −
ˆ
ω(t)

(~v · ∇p)dV.

Note. For Part (b), you need the following fact from class: the Navier-Stokes equations for
an inviscid fluid with no body forces are

ρt +∇ · (ρ~v) = 0

ρ(~vt + (~v · ∇)~v) = −∇p.

6. Our derivation of the Navier-Stokes momentum equation in three space dimensions was
based on applying Newton’s second law to a mass of fluid contained in an evolving region
ω(t). The same idea can be employed in the case of one space dimension, starting with the
momentum

p(t) = A

ˆ b(t)

a(t)

ρ(x, t)v(x, t)dx,

where the interval (a(t), b(t)) replaces ω(t) and a fixed initial interval (a0, b0) replaces ω(0) =
ω0. Derive a one-dimensional version of the Reynolds Transport Theorem, and apply it to
compute dp

dt
in this case.

7. Derive the wave equation for two space dimensions using Hamilton’s Principle. Use a
square membrane [0, L] × [0,M ], and assume the potential energy is proportional to the
deformation from equilibrium, measured by membrane area:

P = k
( ˆ L

0

ˆ M

0

√
1 + u2

x + u2
ydxdy − LM

)
.

Ignore the effect of gravity.

8. In this problem, we’ll consider a single phenomemon from two different inertial reference
frames, and compare the results. In order to make this comparison, we’ll need to work with
a general form of electromotive force E , which we define to be

E =

˛
C

~f · t̂dl,
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where the integral is over a closed circuit C and ~f is the force per unit charge, which according
to the Lorentz force law is

~f = ~E + ~v × ~B.

a. Suppose a rectangular circuit of wire is moving to the right with velocity v as depicted
in Figure 1, and that it enters a constant magnetic field ~B directed out of the page in the
interior of the dashed box. Compute the electromotive force E on electrons in the wire once
the leading end of the wire has entered the magnetic field, and before the leading end exits
the magnetic field.

b. Suppose that the situation in Part (a) is reversed so that the rectangular circuit of wire
is stationary and the magnetic field is moving to the left with velocity −v (so, in particular,
the electrons now have zero velocity1). Again, compute E .

c. Explain how the calculations in Parts (a) and (b) differ?

h ~J

v
~B

Figure 1: Wire entering a magnetic field.

Solutions

1. First, the quantity

u := ρA(
v2

2
+ e)

is clearly (one-dimensional) energy density. We can derive (1) by identifying the energy flux.
Here, A will divide out in the end.

Internal and kinetic energy. For the internal and kinetic energies, the flux is clearly vu (just
as vρ is mass flux), giving the first two terms. I.e.,

vu = (ρve+
1

2
ρv3)A.

Energy associated with heat transfer. The term −Aκ(x)Tx is just Fourier’s law, as discussed
in class.

Energy associated with pressure. First, the easiest way to think about this is to recall that the
one-dimensional energy flux is energy per unit time, and that this energy can be computed

1Ignoring orbital velocity.
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as work done by pressure. I.e., by writing work as force times distance, and noting that force
due to pressure is pA, we can identify the one-dimensional flux as

W ·∆t−1 = (pA∆x)∆t−1 = pA
∆x

∆t
= (pv)A.

Alternatively, we can check how this term would arise in a full derivation, as we did in class
for the continuity equation. For this, we recall that during a time interval [t, t + ∆t], the
fluid will travel a distance v(x, t)∆t, so that the work done by pressure forces is

W = −
(
p(x+ ∆x, t)Av(x+ ∆x, t)∆t− p(x, t)Av(x, t)∆t

)
∼= −(pv)xA∆x∆t.

In the full derivation, the quantity A∆x∆t is divided out, giving the term −(pv)x (already
differentiated in this case). The term −(pv)x appears on the right-hand side of the equation
in this derivation, leading to the positive term in (1).

Energy associated with viscosity. Again, the easy way first. As with pressure,

W ·∆t−1 = µAvx∆x∆t−1 = µAvvx,

where in this case vx arises from v
h

in our usual definition of viscosity. Alternatively, we can
proceed by writing the work done by viscous forces at the right as

Wr
∼=µ

A(v(x+ ∆x+ h, t)− v(x+ ∆x, t))

h
v∆t

∼=µAv(x+ ∆x, t)vx(x+ ∆x, t)∆t,

and likewise the work done by viscous forces at the left by

Wl
∼= − µ

A(v(x− h, t)− v(x, t))

h
v∆t

∼= − µAv(x, t)vx(x, t)∆t.

Then

Wr +Wl =µ
(
v(x+ ∆x, t)vx(x+ ∆x, t)− v(x, t)vx(x, t)

)
A∆t

∼=µ(vvx)xA∆x∆t.

Again, A∆x∆t is divided out in the full derivation, and this is on the right-hand side, leading
to the negative sign in (1).

2. The first step is to compute δE
δu

. We proceed by writing

φ(τ) =E[u+ τh]

=

ˆ L

0

F (u+ τh) +
κ

2
(ux + τhx)

2 − F (u)− u2
xdx,

and computing

φ′(τ) =

ˆ L

0

F ′(u+ τh)h+ κ(ux + τhx)hxdx.
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We have, then,

E ′[u]h = φ′(0) =

ˆ L

0

F ′(u)h+ κuxhxdx.

For the second summand, we integrate by parts to write

E ′[u]h =

ˆ L

0

(F ′(u)− κuxx)hdx.

We conclude
δE

δu
= −κuxx + F ′(u),

and consequently the equation is

ut − (M(−κuxx + F ′(u))x)x = 0.

3. First, our general traffic flow model from class had the form

ut + f(u)x = 0,

and the specific model we considered was the Gompertz-Greenberg model with

f = −cu ln(
u

umax

).

Now, if traffic has higher density ahead of a driver then ux > 0, while if traffic has a lower
density ahead of a driver then ux < 0. (We are thinking of these derivatives as evaluated at
the driver’s current position.) If drivers who see high density ahead begin to slow down the
effect will be a shift of density to the left, while if drivers who see lower density ahead begin
to speed up the effect will be a shift of density to the right. That is, we replace f with a
revised flux

F = f(u)− kux.
Our general model becomes

ut + f(u)x = kuxx,

and the Gompertz-Greenberg model becomes

ut − c
(
u ln(

u

umax

)
)
x

= kuxx.

4. For (a), we see that if y(t) > φ(t) then y will decrease, while if y(t) < φ(t) then y will
increase. This will have the effect of moving y(t) toward φ(t). The equation is easily solved
with an integrating factor, and we obtain

y(t) = e−t/τy0 +
1

τ

ˆ t

0

e−(t−s)/τφ(s)ds.

If φ(t) = φ0 is constant, we get

y(t) = e−t/τ + φ0(1− e−t/τ ),
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so that y(t)→ φ0 as t→∞, as expected.

For (b), the flux is generally vu, so we need

f(u)− µux = vu =⇒ v =
f(u)

u
− µ

u
ux.

For (c), we can allow drivers to transition toward the target velocity v = f(u)
u
− µ

u
ux with a

relaxation model
d

dt
v(x(t), t) = −1

τ
(v − f(u)

u
+
µ

u
ux),

which becomes

vt + vvx = −1

τ
(v − f(u)

u
+
µ

u
ux).

We couple this with
ρt + (vρ)x = 0.

This model is discussed on pp. 72-73 of our reference by Whitham.

5. For (a),

(~vTD~v)i =
3∑
j=1

vj
∂vj
∂xi

=⇒ ~v · (~vTD~v) =
3∑

i,j=1

vivj
∂vj
∂xi

.

Likewise,

((~v · ∇)~v)i =
3∑
j=1

vj
∂vi
∂xj

=⇒ ~v · ((~v · ∇)~v) =
3∑

i,j=1

vivj
∂vi
∂xj

.

By switching the roles of i and j in one of these we see that they agree.

For (b), we proceed precisely as in the differentiation of pi(t) from class, with (ρvi) replaced
by ρ|~v|2 to get

K ′(t) =
1

2

ˆ
ω(t)

ρ((|~v|2)t + (D|~v|2)~v)dV

=
1

2

ˆ
ω(t)

2~v · (ρ~vt) + 2ρ~v · (~vTD~v)dV.

We can now use the momentum equation to write

ρ~vt = −ρ(~v · ∇)~v −∇p,

so that we have

K ′(t) =

ˆ
ω(t)

~v · (ρ~vt) + ρ~v · (~vTD~v)dV

=

ˆ
ω(t)

~v · (−ρ(~v · ∇)~v −∇p) + ρ~v · (~vTD~v)dV

=

ˆ
ω(t)

~v · (−∇p) + ρ(−~v · ((~v · ∇)~v) + ~v · (~vTD~v))dV.
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Using (a), we see that the second and third summands cancel, giving the claim of (b).

6. We start off by deriving a one-dimensional Reynolds Transport Theorem, which will give
us a relation for the derivative

d

dt

ˆ b(t)

a(t)

f(x, t)dx,

where f ∈ C1(R× R+,R). Using the change of variables x = φ(X, t), this integral becomes

ˆ b0

a0

f(φ(X, t), t)φX(X, t)dX.

Similarly as we did in class, we can write

R(X, t) = f(φ(X, t), t)

J(X, t) =φX(X, t).

Notice that φX > 0, because φ(X, 0) = X so that φX = 1, and φ can’t change sign. In this
way, we have ˆ b0

a0

R(X, t)J(X, t)dX,

and we easily compute

d

dt

ˆ b0

a0

R(X, t)J(X, t)dX =

ˆ b0

a0

Rt(X, t)J(X, t) +R(X, t)Jt(X, t)dX.

For R(X, t) we compute

Rt(X, t) =
d

dt
f(φ(X, t), t) = fx(φ(X, t), t)

∂φ

∂t
(X, t) + ft(φ(X, t), t)

= ft(φ(X, t), t) + fx(φ(X, t), t)v(φ(X, t), t).

Likewise for J(X, t) = φX(X, t),

Jt(X, t) =
∂

∂t
φX(X, t) =

∂

∂X
φt(X, t) =

∂

∂X
v(φ(X, t), t)

= vx(φ(X, t), t)φX(X, t) = vx(φ(X, t), t)J(X, t).

We see that

d

dt

ˆ b0

a0

R(X, t)J(X, t)dX =

ˆ b0

a0

{
ft(φ(X, t), t) + fx(φ(X, t), t)v(φ(X, t), t)

+ vx(φ(X, t), t)f(φ(X, t), t)
}
φX(X, t)dX

=

ˆ b(t)

a(t)

ft(x, t) + (vf)x(x, t)dx.

This is the one-dimensional Reynolds Transport Theorem.
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We now just apply this to the momentum

p(t) = A

ˆ b(t)

a(t)

ρ(x, t)v(x, t)dx,

to see that

dp

dt
=A

ˆ b(t)

a(t)

(ρv)t + (ρv2)xdx

=A

ˆ b(t)

a(t)

ρtv + ρvt + v(ρv)x + ρvvxdx

=A

ˆ b(t)

a(t)

ρ(vt + vvx)dx

7. The kinetic energy is

K =

ˆ L

0

ˆ M

0

1

2
ρ(x, y)u2

tdxdy,

so the Lagrangian is

L =

ˆ L

0

ˆ M

0

1

2
ρ(x, y)u2

t − k
(√

1 + u2
x + u2

y − 1
)
dxdy.

The action is

A[u] =

ˆ T

0

ˆ L

0

ˆ M

0

1

2
ρ(x, y)u2

t − k
(√

1 + u2
x + u2

y − 1
)
dxdydt.

If we denote our domain of u

Ω = [0, L]× [0,M ]× [0, T ],

then it’s reasonable to take the domain of A to be the function space

S := {u ∈ C2(Ω) : u|∂Ω = ub = specified}.

According to Hamilton’s Principle, we should have

A′[u] = 0.

For any h in the function space

S0 = {u ∈ C2(Ω) : u|∂Ω = 0}.

We set

φ(τ) =A[u+ τh]

=

ˆ T

0

ˆ L

0

ˆ M

0

1

2
ρ(x, y)(ut + τht)

2 − k
(√

1 + (ux + τhx)2 + (uy + τhy)2 − 1
)
dxdydt,
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and compute

φ′(τ) =

ˆ T

0

ˆ L

0

ˆ M

0

ρ(x, y)(ut + τht)ht − k
(ux + τhx)hx + (uy + τhy)hy√
1 + (ux + τhx)2 + (uy + τhy)2

dxdydt

We see that

A′[u]h = φ′(0) =

ˆ T

0

ˆ L

0

ˆ M

0

ρ(x, y)utht − k
uxhx + uyhy√

1 + u2
x + u2

y

dxdydt.

Upon integrating the first integrand by parts in t, the second by parts in x, and the third
by parts in y, we findˆ T

0

ˆ L

0

ˆ M

0

[
− ρ(x, y)utt + k

( ux√
1 + u2

x + u2
y

)
x

+ k
( uy√

1 + u2
x + u2

y

)
y

]
hdxdydt = 0.

As usual, our freedom to choose h ensures that its multiplier in the integrand must be 0.
I.e.,

−ρ(x, y)utt + k
( ux√

1 + u2
x + u2

y

)
x

+ k
( uy√

1 + u2
x + u2

y

)
y

= 0,

which becomes the wave equation when we assume ux and uy are both small and take ρ(x, y)
constant.

8. For (a), once the right side of the wire has entered the magnetic field, electrons in the wire

are affected by the Lorentz force ~F = q~v × ~B, where q denotes the charge on an electron.
If we take the x-direction to be out of the page and the y-direction to be the direction of
motion, then ~v = (0, v, 0) and ~B = (| ~B|, 0, 0), so that

~v × ~B = −v| ~B|k̂.

I.e., ~f = −v| ~B|k̂, so

E =

˛
C

~f · t̂dl = E =

˛
C
(−v| ~B|)k̂ · t̂dl = −v| ~B|h,

where the sole contribution has been from the front edge of the wire.

For (b), let’s suppose for convenience that the magnetic field arrives at the right edge of the
wire at time t = 0. Subsequently, the magnetic flux through the wire will beˆ

Σ

~B · n̂dS = | ~B|hvt,

where hvt is the area of the wire that has entered the magnetic field. According to Faraday’s
Law, this means ˆ

∂Σ

~E · t̂dl = − d

dt
(| ~B|hvt) = −| ~B|hv.

Summing up with (c), we see that E is the same in both cases, though seemingly for different
reasons. For (a), there are moving charges with no electric field, while for (b) the charge isn’t
moving, but there is an electric field. Since these arise simply as different points of view on
the same problem, it seems natural to wonder if electricity and magnetism are simply two
manifestations of the same phenomenon.2

2They are.
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