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Total Variation & Geometric
Regularization

TV (u) :I| Lu | dx

* Measures “variation” of u, w/o penalizing discontinuities.

*1D: If u is monotonic in [a,b], then TV (u) = |u(b) — u(a)|,
regardless of whether u is discontinuous or not.

*nD: If u(D) = c y(D), then TV(u) = c+oc|)8D|.
* (Coarea formula) Lnf| Lu | dx = I( Ifds)dr

oo {i=r)

*Thus TV controls both size of jumps and geometry of boundaries.



Total Variation Restoration

Regularization: TV (u) = J'| (u | dx
0

Variational Model:

min £ (u) = aTV (u) +% |Ku—z|

* First proposed by Rudin-Osher-Fatemi ’92.

* Allows for edge capturing (discontinuities along curves).

* TVD schemes popular for shock capturing.

(Gradient flow:
u, = _g(u) =all

| % (KKu-K'z) Ou _
() Ut | \ on
anisotropic diffusion  data fidelity *



TV-L?2 and TV-L' Image Models
Rudin-Osher-Fatemi: Minimize for a given image f'(x, y)

Es(u,\) := /D | Vul —I—)\/D(u— )2 dx

Model is convex, with unique global minimizer.
TV-L' Model:
Eq1(u, \ :=/ Vu—l—)\/ u— fldx.

Model is non-strictly convex; global minimizer not unique.

Discrete versions previously studied by: Alliney’96 in 1-D and Nikolova’02
in higher dimensions, and E. Cheon, A. Paranjpye, and L. Vese'02.

Is this a big deal?

Other successful uses of L': Robust statistics; |I' as convexification of I°
(Donoho), TV Wavelet Inpainting (C-Shen-Zhou), Compressive Sensing
(Candes, Donoho, Romberg, Tao),



Surprising Features of TV+L1 Model

Contrast preservation
Data driven scale selection
Cleaner multiscale decompositions

Intrinsic geometric properties provide a way to
solve non-convex shape optimization problems
via convex optimization methods.



Contrast Loss of ROF Model
Theorem (Strong-C 96): If f =1, B,(0)" A=Bx(0),0<r<R;

u=(1=5)18,0) * X2y 1a/8.0)

Locates edges exactly (robust to small noise).
1 _ 1052
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Contrast loss proportional to scale:

Theorem (Bellettini, Caselles, Novaga 02): If f=1,, Q
convex, 0 Q is C''. and for everv n on d Q

curvgo(p) < || ||

0S?2
Then u = (1 2’)\|Q||)1




TV-L1: Contrast & Geometry Preservation

Contrast invariance: If u(x) is the solution for given image f(x), then cu(x)
is the solution for cf(x).

Contrast & Geometry Preservation: Let f(x) =1,(x), where Q is a bounded
domain with smooth boundary. Then, for large enough A, the unique
minimizer of E,(-,\) is exactly f(x).

The model recovers such images exactly. Not true for standard ROF.

u=1

u=0
(Other method to recover contrast loss: Bregman iteration (Osher et al)) s



Contrast & Geometry Preservation

The solution operator for TV4L! acts linearly on some data:

Let D =R". Assume that f(x) and g(x) are two images with
compact, disjoint supports. There exists a minimal separation
distance A such that if

dist(supp(f).supp(g)) > A
then the TV+L! model acts linearly on
{ca1f(x)+ og(x) : 1,0 € R},

l.e. if ug minimizes E; with f as the given image, and ug; minimizes
E1 with g as the given image, then ¢ ur + coug minimizes E; with
cif +crg as the given image.




Contrast & Geometry Preservation

Another important fact, shown by Alliney in the discrete case:

Let f(x) be a given image, and let u(x) be a solution of

mln/ \Vu\Jr?L/ f — uldx.

Then, u(x) itself is the solution of

min/ \Vv\+ﬂ/ lu—v|dx.
v JD D

@ In other words, denoised images are treated as clean — not true
for ROF!




“Scale-space” generated by the original ROF model
Decreasing A

. - i |
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“Scale-space” generated by the TV -L' model




Data Dependent Scale Selection

Plots of u, (x) = f(x)| vsA™
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Discontinuities of fidelity correspond to removal of a feature (one of the squares).
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Multiscale Image Decomposition Example
(related: Tadmor, Nezzar, Vese 03; Kunisch-Scherzer 03)
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TVL1 decomposition gives well separated & contrast preserving features at
different scales. E.g. boat masts, foreground boat appear mostly in only 1]
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Convexification of Shape Optimization

Motivating Problem: Denoising of Binary Images

Given a binary observed image f(z) = 1o(z). find a denoised
(regularized) version.

- @

Noisy binary image Denoised binary image

Applications:

Denoising of fax
documents (Osher, Kang).

Understanding many
important image models:

UGLA-UCLA EEFE=

Noisy binary image Denoised binary image
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Restriction of ROF to Binary Images

Take f(x)=1,(x) and restrict minimization to set of binary images:

. 2
min [V [ (o 10)

u(z)=15(z)

Considered previously by Osher & Kang, Osher & Vese. Equivalent
to the following non-convex geometry problem:

min Per(X) + A\ X AQ|
>CcRN

where S,AS, denotes the symmetric difference of the sets S1 and S2.

Existence of solution for any bounded measurable Q.

Global minimizer not unique in general. Many local minimizers possible.
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Example of Local Minima for Geometry

Let the given set be Q = Bp(0) with R €
(%, %). Then, it is easy to show that the unique
minimizer of the geometry problem is > = 0.

Energy of 15 (gy(z) vs. r
‘ ‘ ‘ ‘ ‘ ‘ ‘ lllustration of how algorithms get

stuck:
- ‘

Other types of local minima:

=

! ! ! ! ! ! ! ! !
0.2 04 0.6 08 1 1.2 1.4 1.6 1.8 2

= X = 1BR(O)(x) is a local minimizer w.r.t.
Ll-norm.




Global Minimum via TVL1

(C-Esedoglu-Nikolova '04)

To find a solution (i.e. a global minimizer) u(x) of the non-convex
variational problem (same as ROF for binary images):

min Per(X) + A\ X AQ|
SCRN

it is sufficient to carry out the following steps:

* Find any minimizer of the convex TVL'energy

Eqi(u,\) = /RN V| + A/RN u — f| da.

Call the solution found v(x).
+ Let Z={xORY:v(x)> | for somes 0(0,1).

Then Z is a global minimizer of the original non-convex problem
for almost every choice of L.

18



Connection of TVL' Model to Shape Denoising

* Coarea formula: /RN |Vu| = /R Per({z : u(x) > u}) du.

* “Layer Cake” theorem:

/RN lu—f|de = /R Hz :u(z) > pyA{z : f(z) > p}| du.

When  f(x)=1;(x)

1
FE1(u,\) = /O Per(im cu(x) > ,u];)—I—A {z 1 u(x) > p} AQ|dpu.
=5 (1) =% (u)

For each upper level set of u(x), we have the same geometry
problem:

min Per(X) + A\ AQ|
>CRN

19



lllustration of Layer-Cake Formula

J"u —v‘ dx:ﬁl‘{x u(x) > ,U}A{x:v(x) > /JHd/J

— {xiv)>u —
20
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lllustration

Energy
X Geometry Problem TVL1 Problem
Non-convex Convex
\ L {arup(a) >} (%)
y (x)
\ / A
\_ - J' Function \'
values agree
on u binary
u binary / Solution u Space

Global Minimizer
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Noisy Image Intermediates, showing the evolution:

Final Result

Intermediates non-binary! The convex TV-L' model opens up
new pathways to global minimizer in the energy landscape.

22



What about other L norms?

.
[y liPde= [ [ pur dpda

_ [T p-1
=7 |1 [ L@ (@) de di

=p/R| (@ 1£(@)] > u}| du

Integrand depends on [ explicitly, and not only on the super level sets
of f; so these terms are not purely geometric: Solving different
geometric problems at different levels.

23



Generalization to Image Segmentation

Chan-Vese Model (2001): Simplified Mumford-Shah: Best
approximation of f(x) by two-valued functions:

u(z) = c1ly(z) + c2lp\ s (@)

Variational CV Segmentation Model:

. 2 2
ming Per(Z)+A {/Z(Cl — f)*dx + /D\Z(CQ — f) de}
SCD

Similar arguments as for shape denoising show CV is equivalent to:

L [ v+ [ {er = 2= (2= H}ul@)do.

7

CONVEX!

Theorem: If (c,,c,,u(x)) is a solution of above formulation, then for a.e. p
in (0,1) the triplet; (01, 2, Ligu(a)>u) (96))

is a global minimizer of the Chan-Vese model. 24




Incorporating the Constraint

UPSHOT: For fixed c,, c, the inner minimization (i.e. the shape optimization)

in our formulation is convex. Also, the constraint on u can be incorporated via
exact penalty formulation into an unconstrained optimization problem:

min [ [Vul+a [ {(e1 = D2 = (2 = N2} u(@)+92(w) da

1
oav
ol ]

Turns out: For y large enough, minimizer u satisfies u(x))\[0,1] for all xin D.

where z(&) looks like:

Solve via gradient descent on Euler-Lagrange equation.
25



onvex rormuiation

Algorithm

O Gradient descent for the convex formulation:

b=V (zi) A {(F—al —(f— o)) +izf(u),

@ Update for the constants:

[ uf dx o o (1 —u)f dx
[ udx 2 [(1—u)dx '

Cl1 =

© Thresholding at the end:

Y ={x:u(x)>u} forsome u € (0,1).




Sample Computation:

0.5 Level Contour 0.65 Level Contour
250°F ' ' ' ' g 250F ' ' '
200+ 200+
150 150
100} 4 100}
-
50 ¢ 50|
Given Image f(X) 50 100 150 200 250 50 100 150 200 250
0.4 Level Contour 0.35 Level Contour
250 ' ' ' ' g 250F ' ' '
200t 200+
150 150 }
- o 100} ~ 100 | —~
50 50+ N
100 150 20 %0 50 100 150 200 250 50 100 150 200 250

u(x) computed 27



Related and Further Works



The idea of writing total variation based optimization problems in
terms of super-level sets goes back (at least) to the works of G.
Strang for problems in plasticity:

min /\Vu\
uS.t. [pufdx=1JD

It is shown that the minimizer is achieved at a characteristic
function for the optimization problem above.

@ Strang, G. L' and L™ approximation of vector fields in the plane.
Nonlinear PDE in Applied Science (Tokyo, 1982), pp. 273 - 288.
North-Holland Math. Stud. 81. Amsterdam, 1983.

@ Strang, G. Maximal flow through a domain. Mathematical Programming.
26:2 (1983), pp. 123 - 143.



Contrast & Geometry Perservation

Subsequent work of W. Yin and collaborators:

@ Applications to removing background effects in DNA
microarray images.

@ Applications to removing illumination effects (shading) from
face images:

—- Better face recognition algorithms.

© Precise choice of parameter A in order remove a feature whose
dual BV norm is known.



Contrast & Geometry Preservation

@ In the fundamental formula

El(u):/D|vu\+/1/|f—u\dx:fRPer({x us )
FARx cu>pp Adx f > pt[du

the integrand is independent of u.
@ = Each level set is processed independently.

@ Combined with subsequent results of Chambolle, Darbon &

Sigelle, and W. Yin that show that after processing, layers can
be stacked back up, we get

Contrast Invariance

Let ¢ : R — R be a strictly monotone function. If u(x) minimizes
E; for the given image f(x), then ¢(u(x)) minimizes E; for the
given image ¢(f(x)).




Convex Formulation

Subsequent work by Chambolle:

@ Extension to certain multi-phase segmentation models: The
non-convex optimization problem:

N
min Vul+ A4 / c: — )% dx
,,m}[n‘ ‘ J,; Dﬁ{u:j}(j )

wedl,2,.

can be reformulated as the convex optimization problem:




Continuous Max Flow/Min Cut (Bresson-C)

> [Strang 83] defined the continuous analogue to the
discrete max flow. He replaced a flow on a discrete
network by a vector field p. The continuous max flow
(CMF) problem can be formulated as follows:

F,f are the sources and sinks,
and w is the capacity constraint

> Application #1: [Strang] F=1, f=0

If C is a cut then the CMF is given by minimizing the
Isoparametric ratio:

> >

|Isoparametric ratio

33



Continuous Max Flow/Min Cut

>  Application #2: [Appleton-Talbot 06] F=0, f=0 (geodesic active contour)
The CMF is

It is a conservation flow (Kirchhoff's law, flow in=flow out).
[AT] proposed to solve the CMF solving this system of PDEs:

We may notice that these PDEs
come from this energy:

(Weighted TV Norm)
>  Application #3: [Bresson-Chan] F=gr, f=0

The previous CMF problem can be solved by the system
of PDEs:

which comes from this energy:

which is the CEN energy! 34



