
TVL1 Models for Imaging:
Global Optimization & Geometric Properties

Part I

Tony F. Chan

Math Dept, UCLA

S. Esedoglu

Math Dept, Univ. Michigan

Other Collaborators: 

J.F. Aujol & M. Nikolova (ENS Cachan), F. Park, X. Bresson (UCLA)

Research supported by NSF, ONR, and NIH.

Papers: www.math.ucla.edu/applied/cam/index.html

Research group:  www.math.ucla.edu/~imagers

http://www.math.ucla.edu/applied/cam/index.html
http://www.math.ucla.edu/~imagers


2



3

Total Variation & Geometric 
Regularization

∫
Ω

∇= dxuuTV ||)(

• Measures “variation” of u, w/o penalizing discontinuities.

•1D: If u is monotonic in [a,b], then TV(u) = |u(b) – u(a)|, 
regardless of whether u is discontinuous or not.

• nD: If u(D) = c χ(D), then TV(u) = c |∂D|.

• (Coarea formula) 

•Thus TV controls both size of jumps and geometry of boundaries.

drdsfdxuf
nR

ru

)(||
}{

∫ ∫ ∫
+∞

∞− =

=∇



4

Total Variation Restoration
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 anisotropic diffusion  data fidelity

∫
Ω

∇= dxuuTV ||)(

* First proposed by Rudin-Osher-Fatemi ’92.

* Allows for edge capturing (discontinuities along curves).

* TVD schemes popular for shock capturing. 

Regularization:

Variational Model:
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TV-L2 and TV-L1 Image Models

Rudin-Osher-Fatemi: Minimize for a given image              :),( yxf

TV-L1 Model:

Discrete versions previously studied by: Alliney’96 in 1-D and Nikolova’02 
in higher dimensions, and E. Cheon, A. Paranjpye, and L. Vese’02.

Is this a big deal? 

Other successful uses of L1: Robust statistics; l1 as convexification of l0 
(Donoho), TV Wavelet Inpainting (C-Shen-Zhou), Compressive Sensing 
(Candes, Donoho, Romberg, Tao), 

Model is convex, with unique global minimizer.

Model is non-strictly convex; global minimizer not unique.
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Surprising Features of TV+L1 Model

• Contrast preservation

• Data driven scale selection

• Cleaner multiscale decompositions

• Intrinsic geometric properties provide a way to 
solve non-convex shape optimization problems 
via convex optimization methods.
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Contrast Loss of ROF Model
• Theorem (Strong-C 96): If f = 1Br(0), ∆ = BR(0), 0 < r < R; 

• Locates edges exactly (robust to small noise).

• Contrast loss proportional to scale-1:

• Theorem (Bellettini, Caselles, Novaga 02): If f = 1Ω, Ω 
convex, ∂ Ω is C1,1, and for every p on ∂ Ω

Then
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TV-L1: Contrast & Geometry Preservation

Contrast invariance: If u(x) is the solution for given image f(x), then cu(x) 
is the solution for cf(x). 

Contrast & Geometry Preservation: Let                   , where     is a bounded 
domain with smooth boundary. Then, for large enough λ, the unique 
minimizer of E1(¢,λ) is exactly         .

The model recovers such images exactly. Not true for standard ROF.

Ω

u=1

u=0

)(1)( xxf Ω= Ω

(Other method to recover contrast loss: Bregman iteration (Osher et al))

)(xf
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                   “Scale-space” generated by the original ROF model

Decreasing λ 
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“Scale-space” generated by the             model
1L-TV
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Plots of                        vs.      )()( xfxu −λ
1−λ

Discontinuities of fidelity correspond to removal of a feature (one of the squares).

TVL2 TVL1

Data Dependent Scale Selection
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Multiscale Image Decomposition Example

TVL1 decomposition gives well separated & contrast preserving features at 
different scales. E.g. boat masts, foreground boat appear mostly in only 1 
scale. 

(related: Tadmor, Nezzar, Vese 03; Kunisch-Scherzer 03)
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Given a binary observed image                        find a denoised 
(regularized) version. 

Applications: 

  Denoising of fax 
documents (Osher, Kang).

  Understanding many 
important image models: 
ROF, Mumford-Shah, 
Chan-Vese, etc.

Motivating Problem: Denoising of Binary Images

Convexification of Shape Optimization
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Restriction of ROF to Binary Images

Take f(x)=1Ω(x) and restrict minimization to set of binary images:

Considered previously by Osher & Kang, Osher & Vese. Equivalent 

to the following non-convex geometry problem: 

where             denotes the symmetric difference of the sets S1 and S2. 21 SS ∆

 Existence of solution for any bounded measurable Ω.

Global minimizer not unique in general. Many local minimizers possible.
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Example of Local Minima for Geometry 
Problem

Illustration of how algorithms get 
stuck:
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Global Minimum via TVL1 
(C-Esedoglu-Nikolova ’04)

To find a solution (i.e. a global minimizer) u(x) of the non-convex 
variational problem (same as ROF for binary images):

it is sufficient to carry out the following steps:

• Find any minimizer of the convex TVL1 energy

Call the solution found v(x).

•  Let                                         for some              .

Then Σ is a global minimizer of the original non-convex problem 
for almost every choice of µ.

{ }µ>∈=Σ )(:R xvx N )1,0(∈µ
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For each upper level set of u(x), we have the same geometry 
problem:

)(1)( xxf Ω=

Connection of TVL1 Model to Shape Denoising

• Coarea formula:

• “Layer Cake” theorem:

When
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Illustration of Layer-Cake Formula
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Illustration
Energy

Solution u Space

Geometry Problem TVL1 Problem

)(xuλ

Global Minimizer

Function 
values agree 
on u binary

Non-convex Convex

u binary
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Intermediates, showing the evolution:Noisy Image

Intermediates non-binary! The convex TV-L1 model opens up 
new pathways to global minimizer in the energy landscape.
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                What about other Lp norms?

Integrand depends on µ explicitly, and not only on the super level sets 
of f; so these terms are not purely geometric: Solving different 
geometric problems at different levels.
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Generalization to Image Segmentation

Chan-Vese Model (2001): Simplified Mumford-Shah: Best 
approximation of f(x) by two-valued functions:

Variational CV Segmentation Model:

Similar arguments as for shape denoising show CV is equivalent to:

Theorem: If (c1,c2,u(x)) is a solution of above formulation, then for a.e. µ 
in (0,1) the triplet:

is a global minimizer of the Chan-Vese model.
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UPSHOT: For fixed c1, c2 the inner minimization (i.e. the shape optimization) 
in our formulation is convex. Also, the constraint on u can be incorporated via 
exact penalty formulation into an unconstrained optimization problem:

where z(ξ) looks like:

Turns out: For γ large enough, minimizer u satisfies u(x)  in [0,1] for all x in D.

Solve via gradient descent on Euler-Lagrange equation.

   Incorporating the Constraint
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Sample Computation:

Given image f(x)

u(x) computed



Related and Further Works
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Continuous Max Flow/Min Cut (Bresson-C)

 Application #1: [Strang] F=1, f=0

If C is a cut then the CMF is given by minimizing the 
isoparametric ratio:

 [Strang 83] defined the continuous analogue to the 
discrete max flow. He replaced a flow on a discrete 
network by a vector field p. The continuous max flow 
(CMF) problem can be formulated as follows:

F,f are the sources and sinks, F,f are the sources and sinks, 
and w is the capacity constraintand w is the capacity constraint

Isoparametric ratioIsoparametric ratio
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 Application #3: [Bresson-Chan] F=gr, f=0
Optimizing the CEN model corresponds to solve the CMF problem:

The previous CMF problem can be solved by the system             
of PDEs:

which comes from this energy:

which is the CEN energy!

 Application #2: [Appleton-Talbot 06] F=0, f=0 (geodesic active contour)

The CMF is 

It is a conservation flow (Kirchhoff’s law, flow in=flow out).

[AT] proposed to solve the CMF solving this system of PDEs:

Continuous Max Flow/Min Cut

We may notice that these PDEs We may notice that these PDEs 
come from this energy:come from this energy:

(Weighted TV Norm)(Weighted TV Norm)


