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Sparse signal recovery

measurements: .

= k-sparse signal
length m = k log(n) . # &

length n
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Problem statement

m as small
as possible

Construct matrix A;: R" — R™

Assume x has
low complexity:
x is k-sparse
(with noise)

Given Ax for any signal x € R”, we can quickly recover x with

Ix =X[lp < € min [lx—ylq

y k—sparse



Parameters

Number of measurements m

Recovery time

Approximation guarantee (norms, mixed)

One matrix vs. distribution over matrices
Explicit construction

Universal matrix (for any basis, after measuring)

Tolerance to measurement noise



Applications

Data stream algorithms
X; = number of items with index i
can maintain Ax under increments to x
recover approximation to x

Efficient data sensing

digital /analog cameras
analog-to-digital converters

Error-correcting codes
code {y € R"|Ay = 0}
x = error vector, Ax = syndrome



Two approaches
Geometric

Dense recovery matrices (e.g., Gaussian, Fourier)
Geometric recovery methods (¢; minimization, LP)

X = argmin||z||; s.t. Pz = dx

Uniform guarantee: one matrix A that works for all x

Combinatorial

Sparse random matrices (typically)
Combinatorial recovery methods or weak, greedy algorithms
Per-instance guarantees, later uniform guarantees
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Unify these techniques

Achieve “best of both worlds”

LP decoding using sparse matrices
combinatorial decoding (with augmented matrices)

Deterministic (explicit) constructions

What do combinatorial and geometric approaches share?
What makes them work?



Sparse matrices: Expander graphs

o=

Adjacency matrix A of a d regular (1,¢) expander graph
Graph G = (X,Y,E), [X|=n, |Y|=m
For any S C X, |S| < k, the neighbor set

IN(S)| = (1 = €)d|S]
Probabilistic construction:
d = O(log(n/k)/€),m = O(klog(n/k)/e?)

Deterministic construction:

d = 0200 (oe(n)/€)) ' — /¢ 2O(Iog*l0g(n)/€)



Bipartite graph

Adjacency matrix
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Measurement matrix

(larger example)
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RIP(p)

A measurement matrix A satisfies RIP(p, k, d) property if for any
k-sparse vector x,

(1= 9)lIxllp < IAX][p < (1 + 0)[Ix]l,-




RIP(p) <= expander

Theorem
(k, €) expansion implies

(1 = 2e)d||x]l1 < [[Ax][x < dl|x]|1
for any k-sparse x. Get RIP(p) for1 < p <1+ 1/logn.

Theorem
RIP(1) + binary sparse matrix implies (k,€) expander for
1-1/(1+9)
e=—T""—-"
2-v2



Expansion =—> LP decoding

Theorem

® adjacency matrix of (2k, €) expander. Consider two vectors x, x;
such that ®x = ®x, and ||x.||1 < ||x||1. Then

I = xulls < —

T(G)HX—XkHl

where xi is the optimal k-term representation for x and

ale) = (2¢)/(1 — 2e).

Guarantees that Linear Program recovers good sparse
approximation

Robust to noisy measurements too



Augmented expander =—> Combinatorial decoding

bit-test matrix - signal = location in binary

Theorem

V js (k,1/8)-expander. ® = W ®, By with mlogn rows. Then, for
any k-sparse x, given ®x, we can recover x in time O(m Iog2 n).

With additional hash matrix and polylog(n) more rows in
structured matrices, can approximately recover all x in time
O(k? Iogo(l) n) with same error guarantees as LP decoding.
Expander central element in



RIP(1) # RIP(2)

Any binary sparse matrix which satisfies RIP(2) must have
Q(kz) FOWS [Chandar '07]

Gaussian random matrix m = O(k log(n/k)) (scaled) satisfies
RIP(2) but not RIP(1)

xT:(O ... 010 --- 0)

yT:(l/k . 1/k 0 .- 0)
Ixle =yl but  [|Gx]ls ~ VK| Gyl



Expansion = RIP(1)

Theorem

(k, €) expansion implies

(1 = 2¢)d|x]ly < [ Ax]l1 < dlix[ly

for any k-sparse x.

Proof.

Take any k-sparse x. Let S be the support of x.




RIP(1) = LP decoding

/1 uncertainty principle

Lemma
Let y satisfy Ay = 0. Let S the set of k largest coordinates of y.
Then

lyslls < ae)llylls-
LP guarantee

Theorem
Consider any two vectors u, v such that for y = u — v we have
Ay =0, ||v|1 < |lull1. S set of k largest entries of u. Then

2
<— 2 usels.
lylls < 1_2a(6)HUS [ft



/1 uncertainty principle

Proof.

(Sketch): Let Sp = S, Si, . . . be coordinate sets of size k in
decreasing order of magnitudes

A’ = A restricted to N(S).

On the one hand

A ysll = lAyslls > (1 — 2€)d]lyllz-
On the other
0= lIAyli=AYyslh = 3 Il

121 (i,j) EE[S):N(S)]
> (1 20)dllyslls — 3 ELS;  N(S)I2/kllys,_, |y
I

> (1 —2¢)dllysll1 — 2edk > 1/kllys;_, Il
=1

> (1 —2€)d|lysll1 — 2ed|lyllx




Combinatorial decoding

Bit-test

o— -
* - Good vot
ood votes

‘— -

®o— -

@— -

e—— -

Bad votes
‘— -

Retain {index, val} if have > d/2 votes for index

d/2+d/2+ d/2 =3d/2 violates expander —> each set of
d/2 incorrect votes gives at most 2 incorrect indices

Decrease incorrect indices by factor 2 each iteration



Empirical results

Probabilty of exact recovery, signed signals Probabilty of exact recovery, positive signals

Performance comparable to dense LP decoding

Image reconstruction (TV/LP wavelets), running times, error
bounds available in



Summary: Structural Results

Geometric Combinatorial
RIP(2) @ RIP(1)

\/
Linear Weak
Programming Greedy



More specifically,

Expander

Explicit constructions
m = k2(1<>g log n)© M

: + 2nd hasher
RIP( I ) matrix (for noise only)
bit tester

l

LP decoding Co(;nbinj.torial
ecoding

(fast update time, sparse)

(fast update time, fast recovery time, sparse)



