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Sparse signal recovery

measurements:

length m = k log(n)
k-sparse signal

length n



Problem statement

m as small
as possible

Construct matrix A : Rn → Rm

Assume x has
low complexity:
x is k-sparse
(with noise)

Given Ax for any signal x ∈ Rn, we can quickly recover x̂ with

‖x − x̂‖p ≤ C min
y k−sparse

‖x − y‖q



Parameters

Number of measurements m

Recovery time

Approximation guarantee (norms, mixed)

One matrix vs. distribution over matrices

Explicit construction

Universal matrix (for any basis, after measuring)

Tolerance to measurement noise



Applications

Data stream algorithms

xi = number of items with index i
can maintain Ax under increments to x
recover approximation to x

Efficient data sensing

digital/analog cameras
analog-to-digital converters

Error-correcting codes

code {y ∈ Rn|Ay = 0}
x = error vector, Ax = syndrome
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Two approaches

Geometric [Donoho ’04],[Candes-Tao ’04, ’06],[Candes-Romberg-Tao ’05],

[Rudelson-Vershynin ’06], [Cohen-Dahmen-DeVore ’06], and many others...

Dense recovery matrices (e.g., Gaussian, Fourier)
Geometric recovery methods (`1 minimization, LP)

x̂ = argmin‖z‖1 s.t. Φz = Φx

Uniform guarantee: one matrix A that works for all x

Combinatorial [Gilbert-Guha-Indyk-Kotidis-Muthukrishnan-Strauss ’02],

[Charikar-Chen-FarachColton ’02] [Cormode-Muthukrishnan ’04],

[Gilbert-Strauss-Tropp-Vershynin ’06, ’07]

Sparse random matrices (typically)
Combinatorial recovery methods or weak, greedy algorithms
Per-instance guarantees, later uniform guarantees
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Paper A/E Sketch length Encode time Column sparsity/ Decode time Approx. error Noise
Update time

[CCFC02, CM06] E k logc n n logc n logc n k logc n !2 ≤ C!2
E k log n n log n log n n log n !2 ≤ C!2

[CM04] E k logc n n logc n logc n k logc n !1 ≤ C!1
E k log n n log n log n n log n !1 ≤ C!1

[CRT06] A k log(n/k) nk log(n/k) k log(n/k) LP !2 ≤ C
k1/2

!1 Y
A k logc n n log n k logc n LP !2 ≤ C

k1/2
!1 Y

[GSTV06] A k logc n n logc n logc n k logc n !1 ≤ C log n!1 Y

[GSTV07] A k logc n n logc n logc n k2 logc n !2 ≤ C
k1/2

!1

[NV07] A k log(n/k) nk log(n/k) k log(n/k) nk2 logc n !2 ≤ C(log n)1/2

k1/2
!1 Y

A k logc n n log n k logc n nk2 logc n !2 ≤ C(log n)1/2

k1/2
!1 Y

[GLR08] A k(log n)c log log log n kn1−a n1−a LP !2 ≤ C
k1/2

!1
(k “large”)

This paper A k log(n/k) n log(n/k) log(n/k) LP !1 ≤ C!1 Y

Figure 1. Summary of the best prior results.

Paper A/E Sketch length Encode time Update time Decode time Approx. error Noise
[DM08] A k log(n/k) nk log(n/k) k log(n/k) nk log(n/k) log D !2 ≤ C

k1/2
!1 Y

[NT08] A k log(n/k) nk log(n/k) k log(n/k) nk log(n/k) log D !2 ≤ C
k1/2

!1 Y
A k logc n n log n k logc n n log n log D !2 ≤ C

k1/2
!1 Y

[IR08] A k log(n/k) n log(n/k) log(n/k) n log(n/k) !1 ≤ C!1 Y

Figure 2. Recent work.

Theorem 1. Consider any m × n matrix Φ that is the adjacency matrix of an (k, ε)-unbalanced
expander G = (A,B,E), |A| = n, |B| = m, with left degree d, such that 1/ε, d are smaller than n.
Then the scaled matrix Φ/d1/p satisfies the RIPp,k,δ property, for 1 ≤ p ≤ 1 + 1/ log n and δ = Cε
for some absolute constant C > 1.

The fact that the unbalanced expanders yield matrices with RIP-p property is not an accident.
In particular, we show in Section 2 that any binary matrix Φ in which each column has d ones5

and which satisfies RIP-1 property with proper parameters, must be an adjacency matrix of a
good unbalanced expander. That is, an RIP-p matrix and the adjacency matrix of an unbalanced
expander are essentially equivalent. Therefore, RIP-1 provides an interesting “analytic” formulation
of expansion for unbalanced graphs. Also, without significantly improved explicit constructions of
unbalanced expanders with parameters that match the probabilistic bounds (a longstanding open
problem), we do not expect significant improvements in the explicit constructions of RIP-1 matrices.

5In fact, the latter assumption can be removed without loss of generality. The reason is that, from the RIP-1
property alone, it follows that each column must have roughly the same number of ones. The slight unbalance in the
number of ones does not affect our results much; however, it does complicate the notation somewhat. As a result, we
decided to keep this assumption throughout the paper.
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for some absolute constant C > 1.

The fact that the unbalanced expanders yield matrices with RIP-p property is not an accident.
In particular, we show in Section 2 that any binary matrix Φ in which each column has d ones5

and which satisfies RIP-1 property with proper parameters, must be an adjacency matrix of a
good unbalanced expander. That is, an RIP-p matrix and the adjacency matrix of an unbalanced
expander are essentially equivalent. Therefore, RIP-1 provides an interesting “analytic” formulation
of expansion for unbalanced graphs. Also, without significantly improved explicit constructions of
unbalanced expanders with parameters that match the probabilistic bounds (a longstanding open
problem), we do not expect significant improvements in the explicit constructions of RIP-1 matrices.

5In fact, the latter assumption can be removed without loss of generality. The reason is that, from the RIP-1
property alone, it follows that each column must have roughly the same number of ones. The slight unbalance in the
number of ones does not affect our results much; however, it does complicate the notation somewhat. As a result, we
decided to keep this assumption throughout the paper.

Recent results: breaking news



Unify these techniques

Achieve “best of both worlds”

LP decoding using sparse matrices
combinatorial decoding (with augmented matrices)

Deterministic (explicit) constructions

What do combinatorial and geometric approaches share?
What makes them work?



Sparse matrices: Expander graphs

S N(S)

Adjacency matrix A of a d regular (1, ε) expander graph
Graph G = (X ,Y ,E ), |X | = n, |Y | = m
For any S ⊂ X , |S | ≤ k, the neighbor set

|N(S)| ≥ (1− ε)d |S |

Probabilistic construction:

d = O(log(n/k)/ε),m = O(k log(n/k)/ε2)

Deterministic construction:

d = O(2O(log3(log(n)/ε))),m = k/ε 2O(log3(log(n)/ε))



Bipartite graph
Adjacency matrix

1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1

0 1 1 0 0 1 1 1

1 0 0 1 1 0 0 1

1 1 1 0 1 0 1 0

Measurement matrix
(larger example)

50 100 150 200 250

5

10

15

20



RIP(p)

A measurement matrix A satisfies RIP(p, k , δ) property if for any
k-sparse vector x ,

(1− δ)‖x‖p ≤ ‖Ax‖p ≤ (1 + δ)‖x‖p.



RIP(p) ⇐⇒ expander

Theorem
(k , ε) expansion implies

(1− 2ε)d‖x‖1 ≤ ‖Ax‖1 ≤ d‖x‖1

for any k-sparse x. Get RIP(p) for 1 ≤ p ≤ 1 + 1/ log n.

Theorem
RIP(1) + binary sparse matrix implies (k, ε) expander for

ε =
1− 1/(1 + δ)

2−
√

2
.



Expansion =⇒ LP decoding

Theorem
Φ adjacency matrix of (2k , ε) expander. Consider two vectors x, x∗
such that Φx = Φx∗ and ‖x∗‖1 ≤ ‖x‖1. Then

‖x − x∗‖1 ≤
2

1− 2α(ε)
‖x − xk‖1

where xk is the optimal k-term representation for x and
α(ε) = (2ε)/(1− 2ε).

Guarantees that Linear Program recovers good sparse
approximation

Robust to noisy measurements too



Augmented expander =⇒ Combinatorial decoding
Combinatorial decoding: bit-testLocating a Heavy Hitter

! Suppose the signal contains one “spike” and no noise

! log2 d bit tests will identify its location, e.g.,

B1s =




0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1









0
0
1
0
0
0
0
0





=




0
1
0




MSB

LSB

bit-test matrix · signal = location in binary

One Sketch for All (MMDS 2006) 18

Theorem
Ψ is (k , 1/8)-expander. Φ = Ψ⊗r B1 with m log n rows. Then, for
any k-sparse x, given Φx, we can recover x in time O(m log2 n).

With additional hash matrix and polylog(n) more rows in
structured matrices, can approximately recover all x in time
O(k2 logO(1) n) with same error guarantees as LP decoding.

Expander central element in [Indyk ’08], [Gilbert-Strauss-Tropp-Vershynin ’06, ’07]



RIP(1) 6= RIP(2)

Any binary sparse matrix which satisfies RIP(2) must have
Ω(k2) rows [Chandar ’07]

Gaussian random matrix m = O(k log(n/k)) (scaled) satisfies
RIP(2) but not RIP(1)

xT =
(
0 · · · 0 1 0 · · · 0

)
yT =

(
1/k · · · 1/k 0 · · · 0

)
‖x‖1 = ‖y‖1 but ‖Gx‖1 ≈

√
k‖Gy‖1



Expansion =⇒ RIP(1)

Theorem
(k, ε) expansion implies

(1− 2ε)d‖x‖1 ≤ ‖Ax‖1 ≤ d‖x‖1

for any k-sparse x.

Proof.
Take any k-sparse x . Let S be the support of x .

Upper bound: ‖Ax‖1 ≤ d‖x‖1 for any x

Lower bound:

most right neighbors unique
if all neighbors unique, would have

‖Ax‖1 = d‖x‖1

can make argument robust

Generalization to RIP(p) similar but upper bound not trivial.



RIP(1) =⇒ LP decoding

`1 uncertainty principle

Lemma
Let y satisfy Ay = 0. Let S the set of k largest coordinates of y .
Then

‖yS‖1 ≤ α(ε)‖y‖1.

LP guarantee

Theorem
Consider any two vectors u, v such that for y = u − v we have
Ay = 0, ‖v‖1 ≤ ‖u‖1. S set of k largest entries of u. Then

‖y‖1 ≤
2

1− 2α(ε)
‖uSc‖1.



`1 uncertainty principle

Proof.
(Sketch): Let S0 = S, S1, . . . be coordinate sets of size k in
decreasing order of magnitudes

A′ = A restricted to N(S).

On the one hand

‖A′yS‖1 = ‖AyS‖1 ≥ (1− 2ε)d‖y‖1.

On the other

0 = ‖A′y‖1 = ‖A′yS‖1 −
X
l≥1

X
(i,j)∈E [Sl :N(S)]

|yi |

≥ (1− 2ε)d‖yS‖1 −
X

l

|E [Sl : N(S)]|1/k‖ySl−1‖1

≥ (1− 2ε)d‖yS‖1 − 2εdk
X
l≥1

1/k‖ySl−1
‖1

≥ (1− 2ε)d‖yS‖1 − 2εd‖y‖1

S

S1

S2

y Ay

N(S)



Combinatorial decoding

Bit-test

Good votes

Bad votes

Retain {index, val} if have > d/2 votes for index

d/2 + d/2 + d/2 = 3d/2 violates expander =⇒ each set of
d/2 incorrect votes gives at most 2 incorrect indices

Decrease incorrect indices by factor 2 each iteration



Empirical results

δ

ρ

Probability of exact recovery, signed signals
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Performance comparable to dense LP decoding

Image reconstruction (TV/LP wavelets), running times, error
bounds available in [Berinde, Indyk ’08]



Summary: Structural Results

Geometric Combinatorial

RIP(2) RIP(1)⇐⇒

Linear
Programming

Weak 
Greedy



More specifically,

Expander

RIP(1) matrix

LP decoding

sparse 
binary

+ 2nd hasher 

(for noise only)

bit tester 

Combinatorial 
decoding

Explicit constructions

m = k2
(log log n)O(1)

(fast update time, sparse)

(fast update time, fast recovery time, sparse)


