
The Split Bregman Method for L1-Regularized
Problems

Tom Goldstein

May 22, 2008

Some Common L1 Regularized Problems

TV Denoising: min
u
‖u‖BV +

µ

2
‖u − f ‖22

De-Blurring/Deconvolution: min
u
‖u‖BV +

µ

2
‖Ku − f ‖22

Basis Pursuit/Compressed Sensing MRI: min
u
‖u‖BV +

µ

2
‖Fu−f ‖22

What Makes these Problems Hard??

I Some “easy” problems...

arg min
u
‖Au − f ‖22 (Differentiable)

arg min
u
|u|1 + ‖u − f ‖22 (Solvable by shrinkage)

I Some “hard” problems

arg min
u
|Φu|1 + ‖u − f ‖22

arg min
u
|u|1 + ‖Au − f ‖22

I What makes these problems hard is the “coupling” between
L1 and L2 terms

A Better Formulation

I We want to solve the general L1 regularization problem:

arg min
u
|Φu|+ ‖Ku − f ‖2

I We need to “split” the L1 and L2 components of this energy

I Introduce a new variable

let d = Φu

I We wish to solve the constrained problem

arg min
u,d
‖d‖1 + H(u) such that d = Φ(u)

Solving the Constrained Problem

arg min
u,x
‖d‖1 + H(u) such that d = Φ(u)

I We add an L2 penalty term to get an unconstrained problem

arg min
u,x
‖d‖1 + H(u) +

λ

2
‖d − Φ(u)‖2

I This splitting was independently introduced by Wang and Dr.
Yin Zhang (FTVd)

I We need a way of modifying this problem to get exact
enforcement of the constraint

I The most obvious way is to use continuation: let λn →∞
I Continuation makes the condition number bad

A Better Solution: Use Bregman Iteration

I We group the first two energy terms together:

arg min
u,d
‖d‖1 + H(u)︸ ︷︷ ︸

E(u,d)

+
λ

2
‖d − Φ(u)‖2

I to get...

arg min
u,d

E (u, d) +
λ

2
‖d − Φ(u)‖2

I We now define the “Bregman Distance” of this convex
functional as

Dp
E (u, d , uk , dk) = E (u, d)− 〈pk

u , u − uk〉+ 〈pk
d , d − dk〉

A Better Solution: Use Bregman Iteration

I Rather than solve min E (u, d) + λ
2‖d − Φ(u)‖2 we recursively

solve

(uk+1, dk+1) = arg min
u,d

Dp
E (u, d , uk , dk) +

λ

2
‖d − Φ(u)‖22

I or

arg min
u,d

E (u, d)− 〈pk
u , u − uk〉+ 〈pk

d , d − dk〉+ λ

2
‖d −Φ(u)‖22

I Where pu and pd are in the subgradient of E with respect to
the variables u and d

Why does this work?

I Because of the convexity of the functionals we are using, it
can be shown that

‖d − Φu‖ → 0 as k →∞

I Furthermore, is can be shown that the limiting values,
u∗ = limk→∞ uk and d∗ = limk→∞ dk satisfy the original
constrained optimization problem

arg min
u,d
‖d‖1 + H(u) such that d = Φ(u)

I It therefore follows that u∗ is a solution to the original L1
constrained problem

u∗ = arg min
u
|Φu|+ ‖Ku − f ‖2

Don’t Worry! This isn’t as complicated as it looks

I As is done for Bregman iterative denoising, we can get explicit
formulas for pu and pd , and use them to simplify the iteration

I This gives us the simplified iteration

(uk+1, dk+1) = arg min
u,d
‖d‖1 + H(u) +

λ

2
‖d − Φ(u)− bk‖2

bk+1 = bk + (Φ(u)− dk)

I This is the analog of “adding the noise back” when we use
Bregman for denoising

Summary of what we have so far

I We began with an L1-constrained problem

u∗ = arg min |Φu|+ ‖Ku − f ‖2

I We form the “Split Bregman” formulation

min
u,d
‖d‖1 + H(u) +

λ

2
‖d − Φ(u)− b‖2

I For some optimal value b∗ = b of the Bregman parameter,
these two problems are equivalent

I We solve the optimization problem by iterating

(uk+1, dk+1) = arg min
u,d
‖d‖1 + H(u) +

λ

2
‖d − Φ(u)− bk‖2

bk+1 = bk + (Φ(u)− dk)

Why is this better?

I We can break this algorithm down into three easy steps

Step 1 : uk+1 = arg min
u

H(u) +
λ

2
‖d − Φ(u)− bk‖22

Step 2 : dk+1 = arg min
d
|d |1 +

λ

2
‖d − Φ(u)− bk‖22

Step 3 : bk+1 = bk + Φ(uk+1)− dk+1

I Because of the decoupled form, step 1 is now a differentiable
optimization problem - we can directly solve it with tools like
Fourier Transform, Gauss-Seidel, CG, etc...

I Step 2 can be solved efficiently using shrinkage

dk+1 = shrink(Φ(uk+1) + bk , 1/λ)

I Step 3 is explicit, and easy to evaluate

Example: Fast TV Denoising

I We begin by considering the Anisotropic ROF denoising
problem

arg min
u
|∇xu|+ |∇yu|+ µ

2
‖u − f ‖22

I We then write down the Split Bregman formulation

arg min
x ,y ,u

|dx |+ |dy |+
µ

2
‖u − f ‖22

+
λ

2
‖dx −∇xu − bx‖22

+
λ

2
‖dy −∇yu − by‖22

Example: Fast TV Denoising

I The TV algorithm then breaks down into these steps:

Step 1 : uk+1 = G (uk)

Step 2 : dk+1
x = shrink(∇xu

k+1 + bk
x , 1/λ)

Step 3 : dk+1
y = shrink(∇yuk+1 + bk

y , 1/λ)

Step 4 : bk+1
x = bk

x + (∇xu − x)

Step 5 : bk+1
y = bk

y + (∇yu − y)

where G (uk) represents the results of one Gauss Seidel sweep
for the corresponding L2 optimization problem.

I This is very cheap – each step is only a few operations per
pixel

Isotropic TV

I This method can do isotropic TV using the following
decoupled formulation

arg min
√

d2
x + d2

y +
µ

2
‖u − f ‖22

+
λ

2
‖dx −∇xu − bx‖22 +

λ

2
‖dy −∇yu − by‖22

I We now have to solve for (dx , dy) using the generalized
shrinkage formula (Yin et. al.)

dk+1
x = max(sk − 1/λ, 0)

∇xu
k + bk

x

sk

dk+1
y = max(sk − 1/λ, 0)

∇yuk + bk
y

sk

where
sk =

√
(∇xuk + bk

x)2 + (∇yuk + bk
y)2

Time Trials

I Time trials were done on a Intel Core 2 Due desktop (3 GHz)

I Linux Platform, compiled with g++

Anisotropic
Image Time/cycle (sec) Time Total (sec)

256× 256 Blocks 0.0013 0.068

512× 512 Lena 0.0054 0.27

Isotropic
Image Time/cycle (sec) Time Total (sec)

256× 256 Blocks 0.0018 0.0876

512× 512 Lena 0.011 0.55

This can be made even faster...
I Most of the denoising takes place in first 10 iterations

This can be made even faster...

I Most of the denoising takes place in first 10 iterations

I “Staircases” form quickly, but then take some time to flatten
out

I If we are willing to accept a “visual” convergence criteria, we
can denoise in about 10 iterations (0.054 sec) for Lena, and
20 iterations (0.024 sec) for the blocky image.

This can be made even faster...

Compressed Sensing for MRI

I Many authors (Donoho, Yin, etc...) get superior
reconstruction using both TV and Besov regularizers

I We wish to solve

arg min
u
|∇u|+ |Wu|+ µ

2
‖RFu − f k‖22

where R comprises a subset of rows of the identity, and W is
an orthogonal wavelet transform (Haar).

I Apply the “Split Bregman” method: Let w ←Wu,
dx ← ∇xu, and dy ← ∇yu

arg min
u,dx ,dy ,w

√
d2
x + d2

y + |w |+ µ

2
‖RFu − f ‖22

+
λ

2
‖dx −∇xu − bx‖22 +

λ

2
‖dy −∇yu − by‖22

+
γ

2
‖w −Wu − bw‖22

Compressed Sensing for MRI

I The optimality condition for u is circulant:

(µFTRTRF − λ∆ + γI)uk+1 = rhsk

I The resulting algorithm is

Unconstrained CS Optimization Algorithm
uk+1 = F−1K−1Frhsk

(dk+1
x , dk+1

y) = shrink(∇xu + bx ,∇yu + by , 1/λ)

wk+1 = shrink(Wu + bw , 1/γ)
bk+1
x = bk

x + (∇xu − dx)
bk+1
y = bk

y + (∇yu − dy)

bk+1
w = bk

w + (Wu − w)

Compressed Sensing for MRI

I To solve the constrained problem

arg min
u
|∇u|+ |Wu| such that ‖RFu − f ‖2 < σ

we use “double Bregman”

I First, solve the unconstrained problem

arg min
u
|∇u|+ |Wu|+ µ

2
‖RFu − f k‖22

by performing “inner” iterations

I Then, update

f k+1 = f k + f − RFuk+1

this is an “outer iteration”

Compressed Sensing
I 256 x 256 MRI of phantom, 30%

Bregman Iteration vs Continuation

I As λ→∞, the condition number of each sub-problem goes
to ∞

I This is okay if we have a direct solver for each sub-problem
(such as FFT)

I Drawback: Direct solvers are slower than iterative solvers, or
may not be available

I With Bregman iteration, condition number stays constant -
we can use efficient iterative solvers

Example: Direct Solvers May be Inefficient

I TV-L1:
arg min

u
|∇u|+ µ|u − f |

I Split-Bregman formulation

arg min
u,d
|d |+ µ|v − f |+ λ

2
‖d −∇u − bd‖22 +

γ

2
‖u − v − bv‖22

I We must solve the sub-problem

(µI − λ∆)u = RHS

I If λ ≈ µ, then this is strongly diagonally dominant: use
Gauss-Seidel (cheap)

I If λ >> µ, then we must use a direct solver: 2 FFT’s per
iteration (expensive)

Example: Direct Solvers May Not Exist

I Total-Variation based Inpainting:

arg min
u

∫
Ω
|∇u|+ µ

∫
Ω/D

(u − f)2

arg min
u
|∇u|+ µ‖Ru − f ‖2

where R consists of rows of the identity matrix.

I The optimization sub-problem is

(µRTR − λ∆)u = RHS

I Not Circulant! - We have to use an iterative solver (e.g.
Gauss-Seidel)

Generalizations

I Bregman Iteration can be used to solve a wide range of
non-L1 problems

arg min J(u) such that A(u) = 0

where J and ‖A(·)‖2 are convex.
I We can use a Bregman-like penalty function

uk+1 = arg min J(u) +
λ

2
‖A(u)− bk‖2

bk+1 = bk − A(u)

I Theorem: Any fixed point of the above algorithm is solution
to the original constrained problem

I Convergence can be proved for a broad class of problems:
If J is strictly convex and twice differentiable, then ∃λ0 > 0
such that the algorithm converges for any

λ < λ0

Conclusion

I The Split Bregman formulation is a fast tool that can solve
almost any L1 regularization problem

I Small memory footprint

I This method is easily parallelized for large problems

I Easy to code

Conclusion

Acknowledgment
We thank Jie Zheng for his helpful discussions regarding MR image
processing. This publication was made possible by the support of
the National Science Foundation’s GRFP program, as well as ONR

grant N000140710810 and the Department of Defense.

	L1-Regularized Problems
	Subsection no.1.1

	Section no. 2
	Lists I

