Decoding in Compressed Sensing

Albert Cohen, Wolfgang Dahmen, Ronald DeVore, Guergana Petrova, Przemek Wojtaszczek

Discrete Compressed Sensing

- $x \in \mathbb{R}^{N}$ with N large

Discrete Compressed Sensing

- $x \in \mathbb{R}^{N}$ with N large
- We are able to ask n questions about x

Discrete Compressed Sensing

- $x \in \mathbb{R}^{N}$ with N large
- We are able to ask n questions about x
- Question means inner product $v \cdot x$ with $v \in \mathbb{R}^{N}$ - called sample

Discrete Compressed Sensing

- $x \in \mathbb{R}^{N}$ with N large
- We are able to ask n questions about x
- Question means inner product $v \cdot x$ with $v \in \mathbb{R}^{N}$ - called sample
- What are the best questions to ask??

Discrete Compressed Sensing

- $x \in \mathbb{R}^{N}$ with N large
- We are able to ask n questions about x
- Question means inner product $v \cdot x$ with $v \in \mathbb{R}^{N}$ - called sample
- What are the best questions to ask??
- Any such sampling is given by Φx where Φ is an $n \times N$ matrix

Discrete Compressed Sensing

- $x \in \mathbb{R}^{N}$ with N large
- We are able to ask n questions about x
- Question means inner product $v \cdot x$ with $v \in \mathbb{R}^{N}$ - called sample
- What are the best questions to ask??
- Any such sampling is given by Φx where Φ is an $n \times N$ matrix
- We are interested in the good / best matrices Φ

Discrete Compressed Sensing

- $x \in \mathbb{R}^{N}$ with N large
- We are able to ask n questions about x
- Question means inner product $v \cdot x$ with $v \in \mathbb{R}^{N}$ - called sample
- What are the best questions to ask??
- Any such sampling is given by Φx where Φ is an $n \times N$ matrix
- We are interested in the good / best matrices Φ
- Here good means the samples $y=\Phi x$ contain enough information to approximate x well

Encoder/Decoder

- We view Φ as an encoder

Encoder/Decoder

- We view Φ as an encoder
- Since $\Phi: \mathbb{R}^{N} \rightarrow \mathbb{R}^{n}$ many x are encoded with same y

Encoder/Decoder

- We view Φ as an encoder
- Since $\Phi: \mathbb{R}^{N} \rightarrow \mathbb{R}^{n}$ many x are encoded with same y
- $\mathcal{N}:=\{\eta: \Phi \eta=0\}$ the null space of Φ

Encoder/Decoder

- We view Φ as an encoder
- Since $\Phi: \mathbb{R}^{N} \rightarrow \mathbb{R}^{n}$ many x are encoded with same y
- $\mathcal{N}:=\{\eta: \Phi \eta=0\}$ the null space of Φ
- $\mathcal{F}(y):=\{x: \Phi x=y\}=x_{0}+\mathcal{N}$ for any $x_{0} \in \mathcal{F}(y)$

Encoder/Decoder

- We view Φ as an encoder
- Since $\Phi: \mathbb{R}^{N} \rightarrow \mathbb{R}^{n}$ many x are encoded with same y
- $\mathcal{N}:=\{\eta: \Phi \eta=0\}$ the null space of Φ
- $\mathcal{F}(y):=\{x: \Phi x=y\}=x_{0}+\mathcal{N}$ for any $x_{0} \in \mathcal{F}(y)$
- The hyperplanes $\mathcal{F}(y)$ with $y \in \mathbb{R}^{n}$ stratify \mathbb{R}^{N}

The sets $\mathcal{F}(y)$

TAMU $2008-$ D. 4/2

Encoder/Decoder

- We view Φ as an encoder
- Since $\Phi: \mathbb{R}^{N} \rightarrow \mathbb{R}^{n}$ many x are encoded with same y
- $\mathcal{N}:=\{\eta: \Phi \eta=0\}$ the null space of Φ
- $\mathcal{F}(y):=\{x: \Phi x=y\}=x_{0}+\mathcal{N}$ for any $x_{0} \in \mathcal{F}(y)$
- The hyperplanes $\mathcal{F}(y)$ with $y \in \mathbb{R}^{n}$ stratify \mathbb{R}^{N}
- Decoder is any (possibly nonlinear) mapping Δ from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$

Encoder/Decoder

- We view Φ as an encoder
- Since $\Phi: \mathbb{R}^{N} \rightarrow \mathbb{R}^{n}$ many x are encoded with same y
- $\mathcal{N}:=\{\eta: \Phi \eta=0\}$ the null space of Φ
- $\mathcal{F}(y):=\{x: \Phi x=y\}=x_{0}+\mathcal{N}$ for any $x_{0} \in \mathcal{F}(y)$
- The hyperplanes $\mathcal{F}(y)$ with $y \in \mathbb{R}^{n}$ stratify \mathbb{R}^{N}
- Decoder is any (possibly nonlinear) mapping Δ from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$
- $\bar{x}:=\Delta(\Phi(x))$ is our approximation to x from the information extracted

Encoder/Decoder

- We view Φ as an encoder
- Since $\Phi: \mathbb{R}^{N} \rightarrow \mathbb{R}^{n}$ many x are encoded with same y
- $\mathcal{N}:=\{\eta: \Phi \eta=0\}$ the null space of Φ
- $\mathcal{F}(y):=\{x: \Phi x=y\}=x_{0}+\mathcal{N}$ for any $x_{0} \in \mathcal{F}(y)$
- The hyperplanes $\mathcal{F}(y)$ with $y \in \mathbb{R}^{n}$ stratify \mathbb{R}^{N}
- Decoder is any (possibly nonlinear) mapping Δ from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$
- $\bar{x}:=\Delta(\Phi(x))$ is our approximation to x from the information extracted
- This is a typical inverse problem since x is underdetermined by y

Performance

- The only reason such a system might work is because we model signals as sparse or compressible

Performance

- The only reason such a system might work is because we model signals as sparse or compressible
- How should we measure performance of the encoding-decoding?

Performance

- The only reason such a system might work is because we model signals as sparse or compressible
- How should we measure performance of the encoding-decoding?
- Define $\Sigma_{k}:=\left\{x \in \mathbb{R}^{N}: \# \operatorname{supp}(\mathrm{x}) \leq \mathrm{k}\right\}$

$$
\sigma_{k}(x)_{X}:=\inf _{z \in \Sigma_{k}}\|x-z\|_{X}
$$

Performance

- The only reason such a system might work is because we model signals as sparse or compressible
- How should we measure performance of the encoding-decoding?
- Define $\Sigma_{k}:=\left\{x \in \mathbb{R}^{N}: \# \operatorname{supp}(\mathrm{x}) \leq \mathrm{k}\right\}$

$$
\sigma_{k}(x)_{X}:=\inf _{z \in \Sigma_{k}}\|x-z\|_{X}
$$

- Given an encoding - decoding pair (Φ, Δ), we say that this pair is Instance-Optimal of order k for X if for an absolute constant $C>0$

$$
\|x-\Delta(\Phi(x))\|_{X} \leq C \sigma_{k}(x)_{X}
$$

Performance

- The only reason such a system might work is because we model signals as sparse or compressible
- How should we measure performance of the encoding-decoding?
- Define $\Sigma_{k}:=\left\{x \in \mathbb{R}^{N}: \# \operatorname{supp}(\mathrm{x}) \leq \mathrm{k}\right\}$

$$
\sigma_{k}(x)_{X}:=\inf _{z \in \Sigma_{k}}\|x-z\|_{X}
$$

- Given an encoding - decoding pair (Φ, Δ), we say that this pair is Instance-Optimal of order k for X if for an absolute constant $C>0$

$$
\|x-\Delta(\Phi(x))\|_{X} \leq C \sigma_{k}(x)_{X}
$$

- Given n, N, the best encoding - decoding pairs are those which have the largest k.

Restricted Isometry Property

- What properties determine whether (Φ, Δ) is good?

Restricted Isometry Property

- What properties determine whether (Φ, Δ) is good?
- One property which is known to be sufficient in other results is the following Restricted Isometry Property (RIP) introduced by Candes-Romberg-Tao

Restricted Isometry Property

- What properties determine whether (Φ, Δ) is good?
- One property which is known to be sufficient in other results is the following Restricted Isometry Property (RIP) introduced by Candes-Romberg-Tao
- Φ has the RIP of order k with constant $\delta \in(0,1)$ if

$$
(1-\delta)\|x\|_{\ell_{2}} \leq\|\Phi x\|_{\ell_{2}} \leq(1+\delta)\|x\|_{\ell_{2}} \quad x \in \Sigma_{k}
$$

Restricted Isometry Property

- What properties determine whether (Φ, Δ) is good?
- One property which is known to be sufficient in other results is the following Restricted Isometry Property (RIP) introduced by Candes-Romberg-Tao
- Φ has the RIP of order k with constant $\delta \in(0,1)$ if

$$
(1-\delta)\|x\|_{\ell_{2}} \leq\|\Phi x\|_{\ell_{2}} \leq(1+\delta)\|x\|_{\ell_{2}} \quad x \in \Sigma_{k}
$$

- General Philosophy: the larger the value of k the better the performance of Φ

Restricted Isometry Property

- What properties determine whether (Φ, Δ) is good?
- One property which is known to be sufficient in other results is the following Restricted Isometry Property (RIP) introduced by Candes-Romberg-Tao
- Φ has the RIP of order k with constant $\delta \in(0,1)$ if $(1-\delta)\|x\|_{\ell_{2}} \leq\|\Phi x\|_{\ell_{2}} \leq(1+\delta)\|x\|_{\ell_{2}} \quad x \in \Sigma_{k}$
- General Philosophy: the larger the value of k the better the performance of Φ
- Given n, N, we know there are matrices Φ which have RIP for $k \leq c_{0} n / \log (N / n)$

Restricted Isometry Property

- What properties determine whether (Φ, Δ) is good?
- One property which is known to be sufficient in other results is the following Restricted Isometry Property (RIP) introduced by Candes-Romberg-Tao
- Φ has the RIP of order k with constant $\delta \in(0,1)$ if

$$
(1-\delta)\|x\|_{\ell_{2}} \leq\|\Phi x\|_{\ell_{2}} \leq(1+\delta)\|x\|_{\ell_{2}} \quad x \in \Sigma_{k}
$$

- General Philosophy: the larger the value of k the better the performance of Φ
- Given n, N, we know there are matrices Φ which have RIP for $k \leq c_{0} n / \log (N / n)$
- This range of k cannot be improved: from now on we refer to this as the largest range of k

Sample Results: $X=\ell_{1}$

- Cohen-Dahmen-DeVore If Φ has RIP for $2 k$ then Φ is instance-optimal of order k in ℓ_{1} :

$$
\|x-\Delta(\Phi(x))\|_{\ell_{1}} \leq C \sigma_{k}(x)_{\ell_{1}}
$$

Sample Results: $X=\ell_{1}$

- Cohen-Dahmen-DeVore If Φ has RIP for $2 k$ then Φ is instance-optimal of order k in ℓ_{1} :

$$
\|x-\Delta(\Phi(x))\|_{\ell_{1}} \leq C \sigma_{k}(x)_{\ell_{1}}
$$

- This means that there is some decoder - not necessarily practical (we shall discuss practical decoders in a moment)

Sample Results: $X=\ell_{1}$

- Cohen-Dahmen-DeVore If Φ has RIP for $2 k$ then Φ is instance-optimal of order k in ℓ_{1} :

$$
\|x-\Delta(\Phi(x))\|_{\ell_{1}} \leq C \sigma_{k}(x)_{\ell_{1}}
$$

- This means that there is some decoder - not necessarily practical (we shall discuss practical decoders in a moment)
- Hence we know there are matrices Φ which have Instance Optimality in ℓ_{1} for $k \leq c_{0} n / \log (N / n)$

Sample Results: $X=\ell_{1}$

- Cohen-Dahmen-DeVore If Φ has RIP for $2 k$ then Φ is instance-optimal of order k in ℓ_{1} :

$$
\|x-\Delta(\Phi(x))\|_{\ell_{1}} \leq C \sigma_{k}(x)_{\ell_{1}}
$$

- This means that there is some decoder - not necessarily practical (we shall discuss practical decoders in a moment)
- Hence we know there are matrices Φ which have Instance Optimality in ℓ_{1} for $k \leq c_{0} n / \log (N / n)$
- This range of k cannot be improved

Sample Results: ℓ_{p}

- Given n, N and a constant C_{0} then we have instance optimality in ℓ_{2} for k and this C_{0} only if $k \leq \frac{C_{0} n}{N}$

Sample Results: ℓ_{p}

- Given n, N and a constant C_{0} then we have instance optimality in ℓ_{2} for k and this C_{0} only if $k \leq \frac{C_{0} n}{N}$
- This shows that instance-optimal is not a viable concept for ℓ_{2}

Sample Results: ℓ_{p}

- Given n, N and a constant C_{0} then we have instance optimality in ℓ_{2} for k and this C_{0} only if $k \leq \frac{C_{0} n}{N}$
- This shows that instance-optimal is not a viable concept for ℓ_{2}
- We have to make $c N$ measurement to even get instance optimality for $k=1$

Sample Results: ℓ_{p}

- Given n, N and a constant C_{0} then we have instance optimality in ℓ_{2} for k and this C_{0} only if $k \leq \frac{C_{0} n}{N}$
- This shows that instance-optimal is not a viable concept for ℓ_{2}
- We have to make $c N$ measurement to even get instance optimality for $k=1$
- This bound cannot be improved

Sample Results: ℓ_{p}

- Given n, N and a constant C_{0} then we have instance optimality in ℓ_{2} for k and this C_{0} only if $k \leq \frac{C_{0} n}{N}$
- This shows that instance-optimal is not a viable concept for ℓ_{2}
- We have to make $c N$ measurement to even get instance optimality for $k=1$
- This bound cannot be improved
- For $1<p<2$ the range of k is
$k \leq c_{0} N^{\frac{2-2 / p}{1-2 / p}}[n / \log (N / n)]^{\frac{p}{2-p}}$

What are good matrices

- In other words: Which matrices give biggest range of k ?

What are good matrices

- In other words: Which matrices give biggest range of k ?
- A sufficient condition is that the matrix satisfy RIP or order $2 k$ for k in the large range

What are good matrices

- In other words: Which matrices give biggest range of k ?
- A sufficient condition is that the matrix satisfy RIP or order $2 k$ for k in the large range
- With high probability on the draw of the matrix any of the following is known to give a best matrix

What are good matrices

- In other words: Which matrices give biggest range of k ?
- A sufficient condition is that the matrix satisfy RIP or order $2 k$ for k in the large range
- With high probability on the draw of the matrix any of the following is known to give a best matrix
- Choose at random N vectors from the unit sphere in \mathbb{R}^{n} and use these as the columns of Φ

What are good matrices

- In other words: Which matrices give biggest range of k ?
- A sufficient condition is that the matrix satisfy RIP or order $2 k$ for k in the large range
- With high probability on the draw of the matrix any of the following is known to give a best matrix
- Choose at random N vectors from the unit sphere in \mathbb{R}^{n} and use these as the columns of Φ
- Choose each entry of Φ independently and at random from the Gaussian distribution $\mathcal{N}(0,1 / \sqrt{n})$

What are good matrices

- In other words: Which matrices give biggest range of k ?
- A sufficient condition is that the matrix satisfy RIP or order $2 k$ for k in the large range
- With high probability on the draw of the matrix any of the following is known to give a best matrix
- Choose at random N vectors from the unit sphere in \mathbb{R}^{n} and use these as the columns of Φ
- Choose each entry of Φ independently and at random from the Gaussian distribution $\mathcal{N}(0,1 / \sqrt{n})$
- We choose each entry of Φ independently and at random from the Bernouli distribution and then normalize columns to have length one.

What are good matrices

- In other words: Which matrices give biggest range of k ?
- A sufficient condition is that the matrix satisfy RIP or order $2 k$ for k in the large range
- With high probability on the draw of the matrix any of the following is known to give a best matrix
- Choose at random N vectors from the unit sphere in \mathbb{R}^{n} and use these as the columns of Φ
- Choose each entry of Φ independently and at random from the Gaussian distribution $\mathcal{N}(0,1 / \sqrt{n})$
- We choose each entry of Φ independently and at random from the Bernouli distribution and then normalize columns to have length one.
- Problem: There are no known constructions. Moreover verifying RIP is not feasible computationally

Instance-Optimality in Probability

- We saw that Instance-Optimality for ℓ_{2}^{N} is not viable
- We shall now see it is possible if you accept some probability of failure
- Suppose $\Phi(\omega)$ is a collection of random matrices
- We say this family satisfies RIP of order k with probability $1-\epsilon$ if a random draw $\{\Phi(\omega)\}$ will satisfy RIP of order k with probability $1-\epsilon$
- We say $\{\Phi(\omega)\}$ is bounded with probability $1-\epsilon$ if there is an absolute constant C_{0} such that for each $x \in \mathbb{R}^{N}$

$$
\|\Phi(\omega)(x)\|_{\ell_{2}^{N}} \leq C_{0}\|x\|_{\ell_{2}^{N}}
$$

with probability $1-\epsilon$ a random draw $\{\Phi(\omega)\}$

Theorem: Cohen-Dahmen-DeVore

- If $\{\Phi(\omega)\}$ satisfies RIP of order $3 k$ and boundedness each with probability $1-\epsilon$ then there are decoders $\Delta(\omega)$ such that given any $x \in \ell_{2}^{N}$ we have with probability $1-2 \epsilon$

$$
\|x-\Delta(\omega) \Phi(\omega)(x)\|_{\ell_{2}^{N}} \leq C_{0} \sigma_{k}(x)_{\ell_{2}^{N}}
$$

Theorem: Cohen-Dahmen-DeVore

- If $\{\Phi(\omega)\}$ satisfies RIP of order $3 k$ and boundedness each with probability $1-\epsilon$ then there are decoders $\Delta(\omega)$ such that given any $x \in \ell_{2}^{N}$ we have with probability $1-2 \epsilon$

$$
\|x-\Delta(\omega) \Phi(\omega)(x)\|_{\ell_{2}^{N}} \leq C_{0} \sigma_{k}(x)_{\ell_{2}^{N}}
$$

- Instance-optimality in probability

Theorem: Cohen-Dahmen-DeVore

- If $\{\Phi(\omega)\}$ satisfies RIP of order $3 k$ and boundedness each with probability $1-\epsilon$ then there are decoders $\Delta(\omega)$ such that given any $x \in \ell_{2}^{N}$ we have with probability $1-2 \epsilon$

$$
\|x-\Delta(\omega) \Phi(\omega)(x)\|_{\ell_{2}^{N}} \leq C_{0} \sigma_{k}(x)_{\ell_{2}^{N}}
$$

- Instance-optimality in probability
- Theorem holds for Gaussian, Bernouli and other random families of matrices with $\epsilon=e^{-c n}$

Theorem: Cohen-Dahmen-DeVore

- If $\{\Phi(\omega)\}$ satisfies RIP of order $3 k$ and boundedness each with probability $1-\epsilon$ then there are decoders $\Delta(\omega)$ such that given any $x \in \ell_{2}^{N}$ we have with probability $1-2 \epsilon$

$$
\|x-\Delta(\omega) \Phi(\omega)(x)\|_{\ell_{2}^{N}} \leq C_{0} \sigma_{k}(x)_{\ell_{2}^{N}}
$$

- Instance-optimality in probability
- Theorem holds for Gaussian, Bernouli and other random families of matrices with $\epsilon=e^{-c n}$
- Range of k is $k \leq c_{0} n / \log (N / n)$

Theorem: Cohen-Dahmen-DeVore

- If $\{\Phi(\omega)\}$ satisfies RIP of order $3 k$ and boundedness each with probability $1-\epsilon$ then there are decoders $\Delta(\omega)$ such that given any $x \in \ell_{2}^{N}$ we have with probability $1-2 \epsilon$

$$
\|x-\Delta(\omega) \Phi(\omega)(x)\|_{\ell_{2}^{N}} \leq C_{0} \sigma_{k}(x)_{\ell_{2}^{N}}
$$

- Instance-optimality in probability
- Theorem holds for Gaussian, Bernouli and other random families of matrices with $\epsilon=e^{-c n}$
- Range of k is $k \leq c_{0} n / \log (N / n)$
- Decoder is impractical

Theorem: Cohen-Dahmen-DeVore

- If $\{\Phi(\omega)\}$ satisfies RIP of order $3 k$ and boundedness each with probability $1-\epsilon$ then there are decoders $\Delta(\omega)$ such that given any $x \in \ell_{2}^{N}$ we have with probability $1-2 \epsilon$

$$
\|x-\Delta(\omega) \Phi(\omega)(x)\|_{\ell_{2}^{N}} \leq C_{0} \sigma_{k}(x)_{\ell_{2}^{N}}
$$

- Instance-optimality in probability
- Theorem holds for Gaussian, Bernouli and other random families of matrices with $\epsilon=e^{-c n}$
- Range of k is $k \leq c_{0} n / \log (N / n)$
- Decoder is impractical
- Notice probability is on the draw of Φ not on x

Decoding

- By far the most intriguing part of Compressed Sensing is the decoding - Hence this Workshop

Decoding

- By far the most intriguing part of Compressed Sensing is the decoding - Hence this Workshop
- There are continuing debates as to which decoding is numerically fastest

Decoding

- By far the most intriguing part of Compressed Sensing is the decoding - Hence this Workshop
- There are continuing debates as to which decoding is numerically fastest
- Some common decoders

Decoding

- By far the most intriguing part of Compressed Sensing is the decoding - Hence this Workshop
- There are continuing debates as to which decoding is numerically fastest
- Some common decoders
- ℓ_{1} minimization: Long history - most everyone in this workshop has contributed to its development

Decoding

- By far the most intriguing part of Compressed Sensing is the decoding - Hence this Workshop
- There are continuing debates as to which decoding is numerically fastest
- Some common decoders
- ℓ_{1} minimization: Long history - most everyone in this workshop has contributed to its development
- Greedy algorithms - find support of a good approximation vector and then decode using ℓ_{2} minimization (Gilbert-Tropp; Needell-Vershynin(ROMP), Donoho (STOMP)), Needell - Tropp (CoSAMP)

Decoding

- By far the most intriguing part of Compressed Sensing is the decoding - Hence this Workshop
- There are continuing debates as to which decoding is numerically fastest
- Some common decoders
- ℓ_{1} minimization: Long history - most everyone in this workshop has contributed to its development
- Greedy algorithms - find support of a good approximation vector and then decode using ℓ_{2} minimization (Gilbert-Tropp; Needell-Vershynin(ROMP), Donoho (STOMP)), Needell - Tropp (CoSAMP)
- Iterative Reweighted Least Squares (Osborne, Daubechies-DeVore-Fornasier-Gunturk)

Issues in Decoding

- Range of Instance Optimality: When combined with encoder does it give full range of instance optimality?

Issues in Decoding

- Range of Instance Optimality: When combined with encoder does it give full range of instance optimality?
- Number of computations to decode?

Issues in Decoding

- Range of Instance Optimality: When combined with encoder does it give full range of instance optimality?
- Number of computations to decode?
- Robustness to noise?

Issues in Decoding

- Range of Instance Optimality: When combined with encoder does it give full range of instance optimality?
- Number of computations to decode?
- Robustness to noise?
- Theorems versus numerical examples

Issues in Decoding

- Range of Instance Optimality: When combined with encoder does it give full range of instance optimality?
- Number of computations to decode?
- Robustness to noise?
- Theorems versus numerical examples
- Instance Optimality in Probability

Issues in Decoding

- Range of Instance Optimality: When combined with encoder does it give full range of instance optimality?
- Number of computations to decode?
- Robustness to noise?
- Theorems versus numerical examples
- Instance Optimality in Probability
- Given that we cant construct best encoding matrices it seems that the best results would correspond to random draws of matrices

Issues in Decoding

- Range of Instance Optimality: When combined with encoder does it give full range of instance optimality?
- Number of computations to decode?
- Robustness to noise?
- Theorems versus numerical examples
- Instance Optimality in Probability
- Given that we cant construct best encoding matrices it seems that the best results would correspond to random draws of matrices
- We shall concentrate the rest of the talk on which decoders give instance optimality in ℓ_{2} with high probability for a large range of k

Results for Decoding for Random Draws

- Gilbert and Tropp proved that for Bernouli random matrices, OMP captures a k sparse vector with high probability for the large range of k

Results for Decoding for Random Draws

- Gilbert and Tropp proved that for Bernouli random matrices, OMP captures a k sparse vector with high probability for the large range of k
- Are there practical decoders that give instance optimality in ℓ_{2} ?

Results for Decoding for Random Draws

- Gilbert and Tropp proved that for Bernouli random matrices, OMP captures a k sparse vector with high probability for the large range of k
- Are there practical decoders that give instance optimality in ℓ_{2} ?
- Wojtaszczek has shown that for Gaussian matrices ℓ_{1} minimization does the job for the large range of k

Results for Decoding for Random Draws

- Gilbert and Tropp proved that for Bernouli random matrices, OMP captures a k sparse vector with high probability for the large range of k
- Are there practical decoders that give instance optimality in ℓ_{2} ?
- Wojtaszczek has shown that for Gaussian matrices ℓ_{1} minimization does the job for the large range of k
- The proof is nontrivial and rests on a geometric property of Gaussian matrices: with high probability on the draw $\Phi(\omega)$ the image of the unit ℓ_{1} ball under such matrices will with high probability contain an ℓ_{2} ball of radius $\frac{c_{0} \sqrt{L}}{\sqrt{n}}, \quad L:=n / \log (N / n)$

Results for Decoding for Random Draws

- Gilbert and Tropp proved that for Bernouli random matrices, OMP captures a k sparse vector with high probability for the large range of k
- Are there practical decoders that give instance optimality in ℓ_{2} ?
- Wojtaszczek has shown that for Gaussian matrices ℓ_{1} minimization does the job for the large range of k
- The proof is nontrivial and rests on a geometric property of Gaussian matrices: with high probability on the draw $\Phi(\omega)$ the image of the unit ℓ_{1} ball under such matrices will with high probability contain an ℓ_{2} ball of radius $\frac{c_{0} \sqrt{L}}{\sqrt{n}}, L:=n / \log (N / n)$
- This Geometric Property does not hold for more general random families, e.g. Bernoulli.

Extension to more general families

- DeVore-Petrova-Wojtaszczek

Extension to more general families

- DeVore-Petrova-Wojtaszczek
- We introduce new geometry to handle general random families (including Bernoulli)

Extension to more general families

- DeVore-Petrova-Wojtaszczek
- We introduce new geometry to handle general random families (including Bernoulli)
- $\|y\|_{J}:=\max \left(\left\{\|y\|_{\ell_{\infty}\left(\mathbb{R}^{n}\right)}, \sqrt{L}\|y\|_{\ell_{2}\left(\mathbb{R}^{n}\right)}\right\}, \quad L:=\log (N / n)\right.$.

Extension to more general families

- DeVore-Petrova-Wojtaszczek
- We introduce new geometry to handle general random families (including Bernoulli)
- $\|y\|_{J}:=\max \left(\left\{\|y\|_{\ell_{\infty}\left(\mathbb{R}^{n}\right)}, \sqrt{L}\|y\|_{\ell_{2}\left(\mathbb{R}^{n}\right)}\right\}, \quad L:=\log (N / n)\right.$.
- The unit ball U_{J} under this norm consists of all $y \in \mathbb{R}^{n}$ such that $\|y\|_{\ell_{\infty}} \leq 1 / \sqrt{n}$ and $\|y\|_{\ell_{2}} \leq \sqrt{L} / \sqrt{n}$

Extension to more general families

- DeVore-Petrova-Wojtaszczek
- We introduce new geometry to handle general random families (including Bernoulli)
- $\|y\|_{J}:=\max \left(\left\{\|y\|_{\ell_{\infty}\left(\mathbb{R}^{n}\right)}, \sqrt{L}\|y\|_{\ell_{2}\left(\mathbb{R}^{n}\right)}\right\}, \quad L:=\log (N / n)\right.$.
- The unit ball U_{J} under this norm consists of all $y \in \mathbb{R}^{n}$ such that $\|y\|_{\ell_{\infty}} \leq 1 / \sqrt{n}$ and $\|y\|_{\ell_{2}} \leq \sqrt{L} / \sqrt{n}$
- U_{J} is a trimmed ℓ_{2} ball

Extension to more general families

- DeVore-Petrova-Wojtaszczek
- We introduce new geometry to handle general random families (including Bernoulli)
- $\|y\|_{J}:=\max \left(\left\{\|y\|_{\ell_{\infty}\left(\mathbb{R}^{n}\right)}, \sqrt{L}\|y\|_{\ell_{2}\left(\mathbb{R}^{n}\right)}\right\}, \quad L:=\log (N / n)\right.$.
- The unit ball U_{J} under this norm consists of all $y \in \mathbb{R}^{n}$ such that $\|y\|_{\ell_{\infty}} \leq 1 / \sqrt{n}$ and $\|y\|_{\ell_{2}} \leq \sqrt{L} / \sqrt{n}$
- U_{J} is a trimmed ℓ_{2} ball
- With high probability on the draw $\Phi(\omega)$ we have $\Phi\left(U\left(\ell_{1}^{N}\right)\right) \supset c_{0} U_{J}$

Extension to more general families

- DeVore-Petrova-Wojtaszczek
- We introduce new geometry to handle general random families (including Bernoulli)
- $\|y\|_{J}:=\max \left(\left\{\|y\|_{\ell_{\infty}\left(\mathbb{R}^{n}\right)}, \sqrt{L}\|y\|_{\ell_{2}\left(\mathbb{R}^{n}\right)}\right\}, \quad L:=\log (N / n)\right.$.
- The unit ball U_{J} under this norm consists of all $y \in \mathbb{R}^{n}$ such that $\|y\|_{\ell_{\infty}} \leq 1 / \sqrt{n}$ and $\|y\|_{\ell_{2}} \leq \sqrt{L} / \sqrt{n}$
- U_{J} is a trimmed ℓ_{2} ball
- With high probability on the draw $\Phi(\omega)$ we have $\Phi\left(U\left(\ell_{1}^{N}\right)\right) \supset c_{0} U_{J}$
- Using this result we can prove that encoding with Bernouli (and more general random families) decoding with ℓ_{1} minimization is instance optimal for the large range of k

A Greedy Decoder

- Let $\Phi(\omega)$ be a random family of $n \times N$ compressed sensing matrices

A Greedy Decoder

- Let $\Phi(\omega)$ be a random family of $n \times N$ compressed sensing matrices
- We suppose $n=a m$ with a and m integers

A Greedy Decoder

- Let $\Phi(\omega)$ be a random family of $n \times N$ compressed sensing matrices
- We suppose $n=a m$ with a and m integers
- Let $\Phi_{j}:=\left[\phi_{1}^{j}, \ldots, \phi_{N}^{1}\right], j=1, \ldots, a$, be obtained from the rows $i=j m+1, \ldots, j(m+1)$ of Φ

A Greedy Decoder

- Let $\Phi(\omega)$ be a random family of $n \times N$ compressed sensing matrices
- We suppose $n=a m$ with a and m integers
- Let $\Phi_{j}:=\left[\phi_{1}^{j}, \ldots, \phi_{N}^{1}\right], j=1, \ldots, a$, be obtained from the rows $i=j m+1, \ldots, j(m+1)$ of Φ
- We shall give an iterative thresholding algorithm for decoding

A Greedy Decoder

- Let $\Phi(\omega)$ be a random family of $n \times N$ compressed sensing matrices
- We suppose $n=a m$ with a and m integers
- Let $\Phi_{j}:=\left[\phi_{1}^{j}, \ldots, \phi_{N}^{1}\right], j=1, \ldots, a$, be obtained from the rows $i=j m+1, \ldots, j(m+1)$ of Φ
- We shall give an iterative thresholding algorithm for decoding
- At each step it will choose a set $\bar{\Lambda}_{j}$ of coordinates (of x) where inner products with residuals are large

A Greedy Decoder

- Let $\Phi(\omega)$ be a random family of $n \times N$ compressed sensing matrices
- We suppose $n=a m$ with a and m integers
- Let $\Phi_{j}:=\left[\phi_{1}^{j}, \ldots, \phi_{N}^{1}\right], j=1, \ldots, a$, be obtained from the rows $i=j m+1, \ldots, j(m+1)$ of Φ
- We shall give an iterative thresholding algorithm for decoding
- At each step it will choose a set $\bar{\Lambda}_{j}$ of coordinates (of x) where inner products with residuals are large
- These coordinates are added to all previously selected coordinates to give the new set $\Lambda_{j}:=\bar{\Lambda}_{1} \cup \cdots \cup \bar{\Lambda}_{j}$ which is our current set of coordinates where we think x is big

A Greedy Decoder

- Let $\Phi(\omega)$ be a random family of $n \times N$ compressed sensing matrices
- We suppose $n=a m$ with a and m integers
- Let $\Phi_{j}:=\left[\phi_{1}^{j}, \ldots, \phi_{N}^{1}\right], j=1, \ldots, a$, be obtained from the rows $i=j m+1, \ldots, j(m+1)$ of Φ
- We shall give an iterative thresholding algorithm for decoding
- At each step it will choose a set $\bar{\Lambda}_{j}$ of coordinates (of x) where inner products with residuals are large
- These coordinates are added to all previously selected coordinates to give the new set $\Lambda_{j}:=\bar{\Lambda}_{1} \cup \cdots \cup \bar{\Lambda}_{j}$ which is our current set of coordinates where we think x is big
- There is a threshold parameter $\delta>0$ which can be chosen for examole as $1 / 8$

The Greedy Thresholding Algorithm

- Fix a value of k

The Greedy Thresholding Algorithm

- Fix a value of k
- Initial Step: Let $r^{1}:=y^{1}=\Phi_{1}(x)$ be the initial residual

The Greedy Thresholding Algorithm

- Fix a value of k
- Initial Step: Let $r^{1}:=y^{1}=\Phi_{1}(x)$ be the initial residual
- $\bar{\Lambda}_{1}:=\Lambda_{1}$ is defined as the set of all coordinates ν where

$$
\left|\left\langle y^{1}, \phi_{\nu}^{1}\right\rangle\right|>\delta k^{-1 / 2}\left\|y^{1}\right\|_{\ell_{2}}
$$

The Greedy Thresholding Algorithm

- Fix a value of k
- Initial Step: Let $r^{1}:=y^{1}=\Phi_{1}(x)$ be the initial residual
- $\bar{\Lambda}_{1}:=\Lambda_{1}$ is defined as the set of all coordinates ν where

$$
\left|\left\langle y^{1}, \phi_{\nu}^{1}\right\rangle\right|>\delta k^{-1 / 2}\left\|y^{1}\right\|_{\ell_{2}}
$$

- Define x^{1} as the least squares minimizer

$$
x^{1}:=\underset{\operatorname{supp}(\mathrm{z}) \subset \Lambda_{1}}{\operatorname{Argmin}}\left\|y^{1}-\Phi^{1} z\right\|_{\ell^{2}}
$$

The Greedy Thresholding Algorithm

- Fix a value of k
- Initial Step: Let $r^{1}:=y^{1}=\Phi_{1}(x)$ be the initial residual
- $\bar{\Lambda}_{1}:=\Lambda_{1}$ is defined as the set of all coordinates ν where

$$
\left|\left\langle y^{1}, \phi_{\nu}^{1}\right\rangle\right|>\delta k^{-1 / 2}\left\|y^{1}\right\|_{\ell_{2}}
$$

- Define x^{1} as the least squares minimizer

$$
x^{1}:=\underset{\operatorname{supp}(z) \subset \Lambda_{1}}{\operatorname{Argmin}}\left\|y^{1}-\Phi^{1} z\right\|_{\ell^{2}}
$$

- New residual $r^{1}:=\Phi_{2}\left(x-x^{1}\right)=y^{2}-\Phi_{2}\left(x^{1}\right)$

The Greedy Thresholding Algorithm

- Fix a value of k
- Initial Step: Let $r^{1}:=y^{1}=\Phi_{1}(x)$ be the initial residual
- $\bar{\Lambda}_{1}:=\Lambda_{1}$ is defined as the set of all coordinates ν where

$$
\left|\left\langle y^{1}, \phi_{\nu}^{1}\right\rangle\right|>\delta k^{-1 / 2}\left\|y^{1}\right\|_{\ell_{2}}
$$

- Define x^{1} as the least squares minimizer

$$
x^{1}:=\underset{\operatorname{supp}(z) \subset \Lambda_{1}}{\operatorname{Argmin}}\left\|y^{1}-\Phi^{1} z\right\|_{\ell^{2}}
$$

- New residual $r^{1}:=\Phi_{2}\left(x-x^{1}\right)=y^{2}-\Phi_{2}\left(x^{1}\right)$
- General Step: Repeat the above with r^{1} replaced by r^{j} and Φ_{1} replaced by Φ_{j}

The Stopping Criteria

- We do not want sets with cardinality larger than $2 k$

The Stopping Criteria

- We do not want sets with cardinality larger than $2 k$
- If the size of $\Lambda_{j}:=\bar{\Lambda}_{1} \cup \ldots \cup \bar{\Lambda}_{j}$ exceeds $2 k$ trim back to $2 k$ coordinates by removing elements from $\bar{\Lambda}_{j}$

The Stopping Criteria

- We do not want sets with cardinality larger than $2 k$
- If the size of $\Lambda_{j}:=\bar{\Lambda}_{1} \cup \ldots \cup \bar{\Lambda}_{j}$ exceeds $2 k$ trim back to $2 k$ coordinates by removing elements from $\bar{\Lambda}_{j}$
- This gives the output set Λ

The Stopping Criteria

- We do not want sets with cardinality larger than $2 k$
- If the size of $\Lambda_{j}:=\bar{\Lambda}_{1} \cup \ldots \cup \bar{\Lambda}_{j}$ exceeds $2 k$ trim back to $2 k$ coordinates by removing elements from $\bar{\Lambda}_{j}$
- This gives the output set Λ
- \bar{x} is the least squares solution for this Λ using y^{j} and Φ_{j}

The Stopping Criteria

- We do not want sets with cardinality larger than $2 k$
- If the size of $\Lambda_{j}:=\bar{\Lambda}_{1} \cup \ldots \cup \bar{\Lambda}_{j}$ exceeds $2 k$ trim back to $2 k$ coordinates by removing elements from $\bar{\Lambda}_{j}$
- This gives the output set Λ
- \bar{x} is the least squares solution for this Λ using y^{j} and Φ_{j}
- otherwise stop at step $j=a$ and output $\bar{x}:=x^{a}$

Assumptions on the Random Matrices

- The next slide will give an instance optimality for this algorithm

Assumptions on the Random Matrices

- The next slide will give an instance optimality for this algorithm
- Here are the assumptions on the random family $\Phi(\omega)$, $\omega \in \Omega$ for this theorem to hold

Assumptions on the Random Matrices

- The next slide will give an instance optimality for this algorithm
- Here are the assumptions on the random family $\Phi(\omega)$, $\omega \in \Omega$ for this theorem to hold
- The entries of Φ are independent

Assumptions on the Random Matrices

- The next slide will give an instance optimality for this algorithm
- Here are the assumptions on the random family $\Phi(\omega)$, $\omega \in \Omega$ for this theorem to hold
- The entries of Φ are independent
- Given $\delta>0$ and $x \in \mathbb{R}^{N}$ with probability

$$
\geq 1-C_{1} e^{-c_{1} n \delta^{2}} \text { we have }
$$

$$
\left|\|\Phi(x)\|_{\ell_{2}}-\|x\|_{\ell_{2}}\right| \leq \delta\|x\|_{\ell_{2}}
$$

Assumptions on the Random Matrices

- The next slide will give an instance optimality for this algorithm
- Here are the assumptions on the random family $\Phi(\omega)$, $\omega \in \Omega$ for this theorem to hold
- The entries of Φ are independent
- Given $\delta>0$ and $x \in \mathbb{R}^{N}$ with probability

$$
\geq 1-C_{1} e^{-c_{1} n \delta^{2}} \text { we have }
$$

$$
\left|\|\Phi(x)\|_{\ell_{2}}-\|x\|_{\ell_{2}}\right| \leq \delta\|x\|_{\ell_{2}}
$$

- Given $\delta>0, l \in\{1, \ldots, N\}$ and $z \in \mathbb{R}^{n}$ with probability $\geq 1-C_{1} e^{-c_{1} n \delta^{2}}$ we have

$$
\left|\left\langle z, \phi_{l}\right\rangle\right| \leq \delta\|z\|_{\ell_{2}}
$$

Assumptions on the Random Matrices

- The next slide will give an instance optimality for this algorithm
- Here are the assumptions on the random family $\Phi(\omega)$, $\omega \in \Omega$ for this theorem to hold
- The entries of Φ are independent
- Given $\delta>0$ and $x \in \mathbb{R}^{N}$ with probability

$$
\geq 1-C_{1} e^{-c_{1} n \delta^{2}} \text { we have }
$$

$$
\left|\|\Phi(x)\|_{\ell_{2}}-\|x\|_{\ell_{2}}\right| \leq \delta\|x\|_{\ell_{2}}
$$

- Given $\delta>0, l \in\{1, \ldots, N\}$ and $z \in \mathbb{R}^{n}$ with probability $\geq 1-C_{1} e^{-c_{1} n \delta^{2}}$ we have

$$
\left|\left\langle z, \phi_{l}\right\rangle\right| \leq \delta\|z\|_{\ell_{2}}
$$

- These properties hold for Gaussian and Bernouli

Thresholding Theorem

THEOREM: Given any $0<\delta \leq 1 / 8 \sqrt{3}$ and given any $r, s>0$. The thresholding decoder applied with this choice of δ where the random matrices are of size $n \times N$ with $n=a m$ and $a:=\lceil r \log N\rceil$ gives the following. For any $x \in \mathbb{R}^{N}$, with probability $\geq 1-n^{-s}$ the decoded vector \bar{x} of the above greedy decoder satisfies

$$
\|x-\bar{x}\|_{\ell_{2}} \leq n^{-r}\|x\|+198 \sigma_{k}(x)
$$

for any $k \leq c(\delta, s) n /(\log N)^{2}$.

- Loss of a logarithm in the range of k

Thresholding Theorem

THEOREM: Given any $0<\delta \leq 1 / 8 \sqrt{3}$ and given any $r, s>0$. The thresholding decoder applied with this choice of δ where the random matrices are of size $n \times N$ with $n=a m$ and $a:=\lceil r \log N\rceil$ gives the following. For any $x \in \mathbb{R}^{N}$, with probability $\geq 1-n^{-s}$ the decoded vector \bar{x} of the above greedy decoder satisfies

$$
\|x-\bar{x}\|_{\ell_{2}} \leq n^{-r}\|x\|+198 \sigma_{k}(x)
$$

for any $k \leq c(\delta, s) n /(\log N)^{2}$.

- Loss of a logarithm in the range of k
- Do not quite have instance optimality

Thresholding Theorem

THEOREM: Given any $0<\delta \leq 1 / 8 \sqrt{3}$ and given any $r, s>0$. The thresholding decoder applied with this choice of δ where the random matrices are of size $n \times N$ with $n=a m$ and $a:=\lceil r \log N\rceil$ gives the following. For any $x \in \mathbb{R}^{N}$, with probability $\geq 1-n^{-s}$ the decoded vector \bar{x} of the above greedy decoder satisfies

$$
\|x-\bar{x}\|_{\ell_{2}} \leq n^{-r}\|x\|+198 \sigma_{k}(x)
$$

for any $k \leq c(\delta, s) n /(\log N)^{2}$.

- Loss of a logarithm in the range of k
- Do not quite have instance optimality
- Fine for any numerical purpose

