Decoding in Compressed Sensing

Albert Cohen, Wolfgang Dahmen, Ronald DeVore, Guergana Petrova, Przemek Wojtaszczek

• $x \in \mathbb{R}^N$ with N large

- $x \in \mathbb{R}^N$ with N large
- We are able to ask n questions about x

- $x \in \mathbb{R}^N$ with N large
- We are able to ask n questions about x
- Question means inner product $v \cdot x$ with $v \in \mathbb{R}^N$ called sample

- $x \in \mathbb{R}^N$ with N large
- We are able to ask n questions about x
- Question means inner product $v \cdot x$ with $v \in \mathbb{R}^N$ called sample
- What are the best questions to ask??

- $x \in \mathbb{R}^N$ with N large
- We are able to ask n questions about x
- Question means inner product $v \cdot x$ with $v \in \mathbb{R}^N$ called sample
- What are the best questions to ask??
- Any such sampling is given by Φx where Φ is an $n \times N$ matrix

- $x \in \mathbb{R}^N$ with N large
- We are able to ask n questions about x
- Question means inner product $v \cdot x$ with $v \in \mathbb{R}^N$ called sample
- What are the best questions to ask??
- Any such sampling is given by Φx where Φ is an $n \times N$ matrix
- We are interested in the good / best matrices Φ

- $x \in \mathbb{R}^N$ with N large
- We are able to ask n questions about x
- Question means inner product $v \cdot x$ with $v \in \mathbb{R}^N$ called sample
- What are the best questions to ask??
- Any such sampling is given by Φx where Φ is an $n \times N$ matrix
- We are interested in the good / best matrices Φ
- Here good means the samples $y = \Phi x$ contain enough information to approximate x well

• We view Φ as an encoder

- We view Φ as an encoder
- Since $\Phi: \mathbb{R}^N \to \mathbb{R}^n$ many x are encoded with same y

TAMU 2008 – p $3/2^{2}$

- We view Φ as an encoder
- Since $\Phi: \mathbb{R}^N \to \mathbb{R}^n$ many x are encoded with same y

TAMU 2008 – p $3/2^{\circ}$

• $\mathcal{N} := \{\eta : \Phi \eta = 0\}$ the null space of Φ

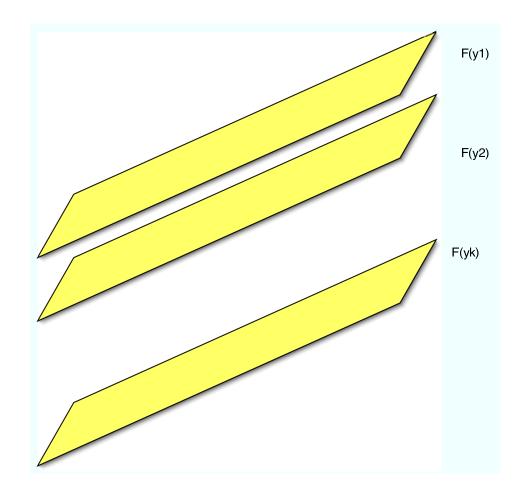
- We view Φ as an encoder
- Since $\Phi: \mathbb{R}^N \to \mathbb{R}^n$ many x are encoded with same y
- $\mathcal{N} := \{\eta : \Phi \eta = 0\}$ the null space of Φ
- $\mathcal{F}(y) := \{x : \Phi x = y\} = x_0 + \mathcal{N} \text{ for any } x_0 \in \mathcal{F}(y)$

We view Φ as an encoder

• Since $\Phi: \mathbb{R}^N \to \mathbb{R}^n$ many x are encoded with same y

- $\mathcal{N} := \{\eta : \Phi \eta = 0\}$ the null space of Φ
- $\mathcal{F}(y) := \{x : \Phi x = y\} = x_0 + \mathcal{N} \text{ for any } x_0 \in \mathcal{F}(y)$
- The hyperplanes $\mathcal{F}(y)$ with $y \in \mathbb{R}^n$ stratify \mathbb{R}^N

The sets $\mathcal{F}(y)$



TAMU 2008 – p. 4/2²

We view Φ as an encoder

• Since $\Phi: \mathbb{R}^N \to \mathbb{R}^n$ many x are encoded with same y

- $\mathcal{N} := \{\eta : \Phi \eta = 0\}$ the null space of Φ
- $\mathcal{F}(y) := \{x : \Phi x = y\} = x_0 + \mathcal{N} \text{ for any } x_0 \in \mathcal{F}(y)$
- The hyperplanes $\mathcal{F}(y)$ with $y \in \mathbb{R}^n$ stratify \mathbb{R}^N
- Decoder is any (possibly nonlinear) mapping Δ from $I\!\!R^n \to I\!\!R^N$

We view Φ as an encoder

• Since $\Phi: \mathbb{R}^N \to \mathbb{R}^n$ many x are encoded with same y

- $\mathcal{N} := \{\eta : \Phi \eta = 0\}$ the null space of Φ
- $\mathcal{F}(y) := \{x : \Phi x = y\} = x_0 + \mathcal{N} \text{ for any } x_0 \in \mathcal{F}(y)$
- The hyperplanes $\mathcal{F}(y)$ with $y \in \mathbb{R}^n$ stratify \mathbb{R}^N
- Decoder is any (possibly nonlinear) mapping Δ from $I\!\!R^n \to I\!\!R^N$

TAMU 2008 – p. 5/2[•]

• $\bar{x} := \Delta(\Phi(x))$ is our approximation to x from the information extracted

We view Φ as an encoder

• Since $\Phi: \mathbb{R}^N \to \mathbb{R}^n$ many x are encoded with same y

- $\mathcal{N} := \{\eta : \Phi \eta = 0\}$ the null space of Φ
- $\mathcal{F}(y) := \{x : \Phi x = y\} = x_0 + \mathcal{N} \text{ for any } x_0 \in \mathcal{F}(y)$
- The hyperplanes $\mathcal{F}(y)$ with $y \in \mathbb{R}^n$ stratify \mathbb{R}^N
- Decoder is any (possibly nonlinear) mapping Δ from $I\!\!R^n \to I\!\!R^N$

TAMU 2008 – p. 5/2[•]

- $\bar{x} := \Delta(\Phi(x))$ is our approximation to x from the information extracted
- This is a typical inverse problem since x is underdetermined by y

The only reason such a system might work is because we model signals as sparse or compressible

- The only reason such a system might work is because we model signals as sparse or compressible
- How should we measure performance of the encoding-decoding?

- The only reason such a system might work is because we model signals as sparse or compressible
- How should we measure performance of the encoding-decoding?
- Define $\Sigma_k := \{x \in \mathbb{R}^N : \# \operatorname{supp}(\mathbf{x}) \le \mathbf{k}\}$

$$\sigma_k(x)_X := \inf_{z \in \Sigma_k} \|x - z\|_X$$

- The only reason such a system might work is because we model signals as sparse or compressible
- How should we measure performance of the encoding-decoding?
- Define $\Sigma_k := \{x \in \mathbb{R}^N : \# \operatorname{supp}(\mathbf{x}) \le \mathbf{k}\}$

$$\sigma_k(x)_X := \inf_{z \in \Sigma_k} \|x - z\|_X$$

• Given an encoding - decoding pair (Φ, Δ) , we say that this pair is Instance-Optimal of order k for X if for an absolute constant C > 0

TAMU 2008 – p. 6/2[,]

 $||x - \Delta(\Phi(x))||_X \le C\sigma_k(x)_X$

- The only reason such a system might work is because we model signals as sparse or compressible
- How should we measure performance of the encoding-decoding?
- Define $\Sigma_k := \{x \in \mathbb{R}^N : \# \operatorname{supp}(x) \le k\}$

$$\sigma_k(x)_X := \inf_{z \in \Sigma_k} \|x - z\|_X$$

• Given an encoding - decoding pair (Φ, Δ) , we say that this pair is Instance-Optimal of order k for X if for an absolute constant C > 0

 $||x - \Delta(\Phi(x))||_X \le C\sigma_k(x)_X$

Given n, N, the best encoding - decoding pairs are those which have the largest k.

TAMU 2008 – p $6/2^{2}$

• What properties determine whether (Φ, Δ) is good?

- What properties determine whether (Φ, Δ) is good?
- One property which is known to be sufficient in other results is the following Restricted Isometry Property (RIP) introduced by Candes-Romberg-Tao

TAMU 2008 – p. 7/2′

- What properties determine whether (Φ, Δ) is good?
- One property which is known to be sufficient in other results is the following Restricted Isometry Property (RIP) introduced by Candes-Romberg-Tao
- ▶ Φ has the RIP of order *k* with constant $\delta \in (0, 1)$ if

 $(1-\delta)\|x\|_{\ell_2} \le \|\Phi x\|_{\ell_2} \le (1+\delta)\|x\|_{\ell_2} \quad x \in \Sigma_k$

- What properties determine whether (Φ, Δ) is good?
- One property which is known to be sufficient in other results is the following Restricted Isometry Property (RIP) introduced by Candes-Romberg-Tao
- Φ has the RIP of order k with constant $\delta \in (0,1)$ if

 $(1-\delta)\|x\|_{\ell_2} \le \|\Phi x\|_{\ell_2} \le (1+\delta)\|x\|_{\ell_2} \quad x \in \Sigma_k$

General Philosophy: the larger the value of k the better the performance of Φ

- What properties determine whether (Φ, Δ) is good?
- One property which is known to be sufficient in other results is the following Restricted Isometry Property (RIP) introduced by Candes-Romberg-Tao
- Φ has the RIP of order *k* with constant $\delta \in (0, 1)$ if

 $(1-\delta)\|x\|_{\ell_2} \le \|\Phi x\|_{\ell_2} \le (1+\delta)\|x\|_{\ell_2} \quad x \in \Sigma_k$

- General Philosophy: the larger the value of k the better the performance of Φ
- Given n, N, we know there are matrices Φ which have RIP for $k \leq c_0 n / \log(N/n)$

TAMU 2008 – p $7/2^{\circ}$

- What properties determine whether (Φ, Δ) is good?
- One property which is known to be sufficient in other results is the following Restricted Isometry Property (RIP) introduced by Candes-Romberg-Tao
- has the RIP of order k with constant $\delta \in (0, 1)$ if

 $(1-\delta)\|x\|_{\ell_2} \le \|\Phi x\|_{\ell_2} \le (1+\delta)\|x\|_{\ell_2} \quad x \in \Sigma_k$

- General Philosophy: the larger the value of k the better the performance of Φ
- Given n, N, we know there are matrices Φ which have RIP for $k \leq c_0 n / \log(N/n)$
- This range of k cannot be improved: from now on we refer to this as the largest range of k

• Cohen-Dahmen-DeVore If Φ has RIP for 2k then Φ is instance-optimal of order k in ℓ_1 :

 $||x - \Delta(\Phi(x))||_{\ell_1} \le C\sigma_k(x)_{\ell_1}$

• Cohen-Dahmen-DeVore If Φ has RIP for 2k then Φ is instance-optimal of order k in ℓ_1 :

 $||x - \Delta(\Phi(x))||_{\ell_1} \le C\sigma_k(x)_{\ell_1}$

This means that there is some decoder - not necessarily practical (we shall discuss practical decoders in a moment)

• Cohen-Dahmen-DeVore If Φ has RIP for 2k then Φ is instance-optimal of order k in ℓ_1 :

 $||x - \Delta(\Phi(x))||_{\ell_1} \le C\sigma_k(x)_{\ell_1}$

- This means that there is some decoder not necessarily practical (we shall discuss practical decoders in a moment)
- Hence we know there are matrices Φ which have Instance Optimality in ℓ_1 for $k \le c_0 n / \log(N/n)$

• Cohen-Dahmen-DeVore If Φ has RIP for 2k then Φ is instance-optimal of order k in ℓ_1 :

 $||x - \Delta(\Phi(x))||_{\ell_1} \le C\sigma_k(x)_{\ell_1}$

TAMU 2008 — p. 8/2′

- This means that there is some decoder not necessarily practical (we shall discuss practical decoders in a moment)
- Hence we know there are matrices Φ which have Instance Optimality in ℓ_1 for $k \le c_0 n / \log(N/n)$
- This range of k cannot be improved

• Given n, N and a constant C_0 then we have instance optimality in ℓ_2 for k and this C_0 only if $k \leq \frac{C_0 n}{N}$

- Given n, N and a constant C_0 then we have instance optimality in ℓ_2 for k and this C_0 only if $k \leq \frac{C_0 n}{N}$
- This shows that instance-optimal is not a viable concept for ℓ_2

TAMU 2008 – p. 9/21

- Given n, N and a constant C_0 then we have instance optimality in ℓ_2 for k and this C_0 only if $k \leq \frac{C_0 n}{N}$
- This shows that instance-optimal is not a viable concept for ℓ_2
- We have to make cN measurement to even get instance optimality for k = 1

- Given n, N and a constant C_0 then we have instance optimality in ℓ_2 for k and this C_0 only if $k \leq \frac{C_0 n}{N}$
- This shows that instance-optimal is not a viable concept for ℓ_2
- We have to make cN measurement to even get instance optimality for k = 1
- This bound cannot be improved

Sample Results: ℓ_p

- Given n, N and a constant C_0 then we have instance optimality in ℓ_2 for k and this C_0 only if $k \leq \frac{C_0 n}{N}$
- This shows that instance-optimal is not a viable concept for ℓ_2

TAMU 2008 – p. 9/2'

- We have to make cN measurement to even get instance optimality for k = 1
- This bound cannot be improved
- For 1 the range of <math>k is $k \le c_0 N^{\frac{2-2/p}{1-2/p}} [n/\log(N/n)]^{\frac{p}{2-p}}$

• In other words: Which matrices give biggest range of k?

- In other words: Which matrices give biggest range of k?
- A sufficient condition is that the matrix satisfy RIP or order 2k for k in the large range

- In other words: Which matrices give biggest range of k?
- A sufficient condition is that the matrix satisfy RIP or order 2k for k in the large range
- With high probability on the draw of the matrix any of the following is known to give a best matrix

- In other words: Which matrices give biggest range of k?
- A sufficient condition is that the matrix satisfy RIP or order 2k for k in the large range
- With high probability on the draw of the matrix any of the following is known to give a best matrix
 - Choose at random N vectors from the unit sphere in \mathbb{R}^n and use these as the columns of Φ

- In other words: Which matrices give biggest range of k?
- A sufficient condition is that the matrix satisfy RIP or order 2k for k in the large range
- With high probability on the draw of the matrix any of the following is known to give a best matrix
 - Choose at random N vectors from the unit sphere in \mathbb{R}^n and use these as the columns of Φ
 - Choose each entry of Φ independently and at random from the Gaussian distribution $\mathcal{N}(0, 1/\sqrt{n})$

- In other words: Which matrices give biggest range of k?
- A sufficient condition is that the matrix satisfy RIP or order 2k for k in the large range
- With high probability on the draw of the matrix any of the following is known to give a best matrix
 - Choose at random N vectors from the unit sphere in \mathbb{R}^n and use these as the columns of Φ
 - Choose each entry of Φ independently and at random from the Gaussian distribution $\mathcal{N}(0, 1/\sqrt{n})$
 - We choose each entry of
 independently and at random from the Bernouli distribution and then normalize columns to have length one.

- In other words: Which matrices give biggest range of k?
- A sufficient condition is that the matrix satisfy RIP or order 2k for k in the large range
- With high probability on the draw of the matrix any of the following is known to give a best matrix
 - Choose at random N vectors from the unit sphere in \mathbb{R}^n and use these as the columns of Φ
 - Choose each entry of Φ independently and at random from the Gaussian distribution $\mathcal{N}(0, 1/\sqrt{n})$
 - We choose each entry of
 independently and at random from the Bernouli distribution and then normalize columns to have length one.
- Problem: There are no known constructions. Moreover verifying RIP is not feasible computationally

TAMU 2008 – p. 10/2

Instance-Optimality in Probability

- We saw that Instance-Optimality for ℓ_2^N is not viable
- We shall now see it is possible if you accept some probability of failure
- Suppose $\Phi(\omega)$ is a collection of random matrices
- We say this family satisfies RIP of order k with probability 1ϵ if a random draw $\{\Phi(\omega)\}$ will satisfy RIP of order k with probability 1ϵ
- We say $\{\Phi(\omega)\}$ is bounded with probability 1ϵ if there is an absolute constant C_0 such that for each $x \in \mathbb{R}^N$

$\|\Phi(\omega)(x)\|_{\ell_2^N} \le C_0 \|x\|_{\ell_2^N}$

with probability $1 - \epsilon$ a random draw $\{\Phi(\omega)\}$

• If $\{\Phi(\omega)\}$ satisfies RIP of order 3k and boundedness each with probability $1 - \epsilon$ then there are decoders $\Delta(\omega)$ such that given any $x \in \ell_2^N$ we have with probability $1 - 2\epsilon$

 $\|x - \Delta(\omega)\Phi(\omega)(x)\|_{\ell_2^N} \le C_0 \sigma_k(x)_{\ell_2^N}$

• If $\{\Phi(\omega)\}\$ satisfies RIP of order 3k and boundedness each with probability $1 - \epsilon$ then there are decoders $\Delta(\omega)$ such that given any $x \in \ell_2^N$ we have with probability $1 - 2\epsilon$

 $\|x - \Delta(\omega)\Phi(\omega)(x)\|_{\ell_2^N} \le C_0 \sigma_k(x)_{\ell_2^N}$

Instance-optimality in probability

• If $\{\Phi(\omega)\}$ satisfies RIP of order 3k and boundedness each with probability $1 - \epsilon$ then there are decoders $\Delta(\omega)$ such that given any $x \in \ell_2^N$ we have with probability $1 - 2\epsilon$

 $\|x - \Delta(\omega)\Phi(\omega)(x)\|_{\ell_2^N} \le C_0 \sigma_k(x)_{\ell_2^N}$

TAMU 2008 – p 12/2

- Instance-optimality in probability
- Theorem holds for Gaussian, Bernouli and other random families of matrices with $\epsilon = e^{-cn}$

• If $\{\Phi(\omega)\}$ satisfies RIP of order 3k and boundedness each with probability $1 - \epsilon$ then there are decoders $\Delta(\omega)$ such that given any $x \in \ell_2^N$ we have with probability $1 - 2\epsilon$

 $\|x - \Delta(\omega)\Phi(\omega)(x)\|_{\ell_2^N} \le C_0 \sigma_k(x)_{\ell_2^N}$

TAMU 2008 – p 12/2

- Instance-optimality in probability
- Theorem holds for Gaussian, Bernouli and other random families of matrices with $\epsilon = e^{-cn}$
- Range of k is $k \le c_0 n / \log(N/n)$

• If $\{\Phi(\omega)\}$ satisfies RIP of order 3k and boundedness each with probability $1 - \epsilon$ then there are decoders $\Delta(\omega)$ such that given any $x \in \ell_2^N$ we have with probability $1 - 2\epsilon$

 $\|x - \Delta(\omega)\Phi(\omega)(x)\|_{\ell_2^N} \le C_0 \sigma_k(x)_{\ell_2^N}$

TAMU 2008 – p 12/2

- Instance-optimality in probability
- Theorem holds for Gaussian, Bernouli and other random families of matrices with $\epsilon = e^{-cn}$
- Range of k is $k \le c_0 n / \log(N/n)$
- Decoder is impractical

• If $\{\Phi(\omega)\}$ satisfies RIP of order 3k and boundedness each with probability $1 - \epsilon$ then there are decoders $\Delta(\omega)$ such that given any $x \in \ell_2^N$ we have with probability $1 - 2\epsilon$

 $\|x - \Delta(\omega)\Phi(\omega)(x)\|_{\ell_2^N} \le C_0 \sigma_k(x)_{\ell_2^N}$

TAMU 2008 – p. 12/2[,]

- Instance-optimality in probability
- Theorem holds for Gaussian, Bernouli and other random families of matrices with $\epsilon = e^{-cn}$
- Range of k is $k \le c_0 n / \log(N/n)$
- Decoder is impractical
- Notice probability is on the draw of Φ not on x

By far the most intriguing part of Compressed Sensing is the decoding - Hence this Workshop

- By far the most intriguing part of Compressed Sensing is the decoding - Hence this Workshop
- There are continuing debates as to which decoding is numerically fastest

- By far the most intriguing part of Compressed Sensing is the decoding - Hence this Workshop
- There are continuing debates as to which decoding is numerically fastest
- Some common decoders

- By far the most intriguing part of Compressed Sensing is the decoding - Hence this Workshop
- There are continuing debates as to which decoding is numerically fastest
- Some common decoders
 - ℓ_1 minimization: Long history most everyone in this workshop has contributed to its development

- By far the most intriguing part of Compressed Sensing is the decoding - Hence this Workshop
- There are continuing debates as to which decoding is numerically fastest
- Some common decoders
 - ℓ_1 minimization: Long history most everyone in this workshop has contributed to its development
 - Greedy algorithms find support of a good approximation vector and then decode using l₂ minimization (Gilbert-Tropp; Needell-Vershynin(ROMP), Donoho (STOMP)), Needell - Tropp (CoSAMP)

- By far the most intriguing part of Compressed Sensing is the decoding - Hence this Workshop
- There are continuing debates as to which decoding is numerically fastest
- Some common decoders
 - ℓ_1 minimization: Long history most everyone in this workshop has contributed to its development
 - Greedy algorithms find support of a good approximation vector and then decode using l₂ minimization (Gilbert-Tropp; Needell-Vershynin(ROMP), Donoho (STOMP)), Needell - Tropp (CoSAMP)
 - Iterative Reweighted Least Squares (Osborne, Daubechies-DeVore-Fornasier-Gunturk)

TAMU 2008 – p. 13/2[•]

Range of Instance Optimality: When combined with encoder does it give full range of instance optimality?

- Range of Instance Optimality: When combined with encoder does it give full range of instance optimality?
- Number of computations to decode?

- Range of Instance Optimality: When combined with encoder does it give full range of instance optimality?
- Number of computations to decode?
- Robustness to noise?

- Range of Instance Optimality: When combined with encoder does it give full range of instance optimality?
- Number of computations to decode?
- Robustness to noise?
- Theorems versus numerical examples

- Range of Instance Optimality: When combined with encoder does it give full range of instance optimality?
- Number of computations to decode?
- Robustness to noise?
- Theorems versus numerical examples
- Instance Optimality in Probability

- Range of Instance Optimality: When combined with encoder does it give full range of instance optimality?
- Number of computations to decode?
- Robustness to noise?
- Theorems versus numerical examples
- Instance Optimality in Probability
- Given that we cant construct best encoding matrices it seems that the best results would correspond to random draws of matrices

- Range of Instance Optimality: When combined with encoder does it give full range of instance optimality?
- Number of computations to decode?
- Robustness to noise?
- Theorems versus numerical examples
- Instance Optimality in Probability
- Given that we cant construct best encoding matrices it seems that the best results would correspond to random draws of matrices
- We shall concentrate the rest of the talk on which decoders give instance optimality in ℓ_2 with high probability for a large range of k

Gilbert and Tropp proved that for Bernouli random matrices, OMP captures a k sparse vector with high probability for the large range of k

TAMU 2008 – p. 15/21

- Gilbert and Tropp proved that for Bernouli random matrices, OMP captures a k sparse vector with high probability for the large range of k
- Are there practical decoders that give instance optimality in ℓ_2 ?

- Gilbert and Tropp proved that for Bernouli random matrices, OMP captures a k sparse vector with high probability for the large range of k
- Are there practical decoders that give instance optimality in ℓ_2 ?
- Wojtaszczek has shown that for Gaussian matrices ℓ_1 minimization does the job for the large range of k

- Gilbert and Tropp proved that for Bernouli random matrices, OMP captures a k sparse vector with high probability for the large range of k
- Are there practical decoders that give instance optimality in ℓ_2 ?
- Wojtaszczek has shown that for Gaussian matrices ℓ_1 minimization does the job for the large range of k
- The proof is nontrivial and rests on a geometric property of Gaussian matrices: with high probability on the draw $\Phi(\omega)$ the image of the unit ℓ_1 ball under such matrices will with high probability contain an ℓ_2 ball of radius $\frac{c_0\sqrt{L}}{\sqrt{L}} = L := n/\log(N/n)$

radius
$$\frac{c_0 \sqrt{L}}{\sqrt{n}}$$
, $L := n/\log(N/n)$

- Gilbert and Tropp proved that for Bernouli random matrices, OMP captures a k sparse vector with high probability for the large range of k
- Are there practical decoders that give instance optimality in ℓ_2 ?
- Wojtaszczek has shown that for Gaussian matrices ℓ_1 minimization does the job for the large range of k
- The proof is nontrivial and rests on a geometric property of Gaussian matrices: with high probability on the draw $\Phi(\omega)$ the image of the unit ℓ_1 ball under such matrices will with high probability contain an ℓ_2 ball of radius $\frac{c_0\sqrt{L}}{\sqrt{n}}$, $L := n/\log(N/n)$
- This Geometric Property does not hold for more general random families, e.g. Bernoulli.
 TAMU 2008 p. 15/2

Extension to more general families

DeVore-Petrova-Wojtaszczek

Extension to more general families

- DeVore-Petrova-Wojtaszczek
- We introduce new geometry to handle general random families (including Bernoulli)

Extension to more general families

- DeVore-Petrova-Wojtaszczek
- We introduce new geometry to handle general random families (including Bernoulli)
- $||y||_J := \max(\{||y||_{\ell_{\infty}(\mathbb{R}^n)}, \sqrt{L}||y||_{\ell_2(\mathbb{R}^n)}\}, \quad L := \log(N/n).$

- DeVore-Petrova-Wojtaszczek
- We introduce new geometry to handle general random families (including Bernoulli)
- $\|y\|_J := \max(\left\{ \|y\|_{\ell_{\infty}(\mathbb{R}^n)}, \sqrt{L}\|y\|_{\ell_2(\mathbb{R}^n)} \right\}, \quad L := \log(N/n).$
- The unit ball U_J under this norm consists of all $y \in \mathbb{R}^n$ such that $\|y\|_{\ell_{\infty}} \leq 1/\sqrt{n}$ and $\|y\|_{\ell_2} \leq \sqrt{L}/\sqrt{n}$

- DeVore-Petrova-Wojtaszczek
- We introduce new geometry to handle general random families (including Bernoulli)
- $\|y\|_J := \max(\left\{ \|y\|_{\ell_{\infty}(\mathbb{R}^n)}, \sqrt{L}\|y\|_{\ell_2(\mathbb{R}^n)} \right\}, \quad L := \log(N/n).$
- The unit ball U_J under this norm consists of all $y \in \mathbb{R}^n$ such that $\|y\|_{\ell_{\infty}} \leq 1/\sqrt{n}$ and $\|y\|_{\ell_2} \leq \sqrt{L}/\sqrt{n}$

TAMU 2008 – p. 16/21

 U_J is a trimmed ℓ_2 ball

- DeVore-Petrova-Wojtaszczek
- We introduce new geometry to handle general random families (including Bernoulli)
- $||y||_J := \max(\{||y||_{\ell_{\infty}(\mathbb{R}^n)}, \sqrt{L}||y||_{\ell_2(\mathbb{R}^n)}\}, \quad L := \log(N/n).$
- The unit ball U_J under this norm consists of all $y \in \mathbb{R}^n$ such that $\|y\|_{\ell_{\infty}} \leq 1/\sqrt{n}$ and $\|y\|_{\ell_2} \leq \sqrt{L}/\sqrt{n}$
- U_J is a trimmed ℓ_2 ball
- With high probability on the draw $\Phi(\omega)$ we have $\Phi(U(\ell_1^N)) \supset c_0 U_J$

- DeVore-Petrova-Wojtaszczek
- We introduce new geometry to handle general random families (including Bernoulli)
- $||y||_J := \max(\{||y||_{\ell_{\infty}(\mathbb{R}^n)}, \sqrt{L}||y||_{\ell_2(\mathbb{R}^n)}\}, \quad L := \log(N/n).$
- The unit ball U_J under this norm consists of all $y \in \mathbb{R}^n$ such that $\|y\|_{\ell_{\infty}} \leq 1/\sqrt{n}$ and $\|y\|_{\ell_2} \leq \sqrt{L}/\sqrt{n}$
- U_J is a trimmed ℓ_2 ball
- With high probability on the draw $\Phi(\omega)$ we have $\Phi(U(\ell_1^N)) \supset c_0 U_J$
- Using this result we can prove that encoding with Bernouli (and more general random families) decoding with ℓ_1 minimization is instance optimal for the large ______ range of k ________

• Let $\Phi(\omega)$ be a random family of $n \times N$ compressed sensing matrices

- Let $\Phi(\omega)$ be a random family of $n \times N$ compressed sensing matrices
- We suppose n = am with a and m integers

- Let $\Phi(\omega)$ be a random family of $n \times N$ compressed sensing matrices
- We suppose n = am with a and m integers
- Let $\Phi_j := [\phi_1^j, \dots, \phi_N^1]$, $j = 1, \dots, a$, be obtained from the rows $i = jm + 1, \dots, j(m + 1)$ of Φ

- Let $\Phi(\omega)$ be a random family of $n \times N$ compressed sensing matrices
- We suppose n = am with a and m integers
- Let $\Phi_j := [\phi_1^j, \dots, \phi_N^1]$, $j = 1, \dots, a$, be obtained from the rows $i = jm + 1, \dots, j(m + 1)$ of Φ
- We shall give an iterative thresholding algorithm for decoding

- Let $\Phi(\omega)$ be a random family of $n \times N$ compressed sensing matrices
- We suppose n = am with a and m integers
- Let $\Phi_j := [\phi_1^j, \dots, \phi_N^1]$, $j = 1, \dots, a$, be obtained from the rows $i = jm + 1, \dots, j(m + 1)$ of Φ
- We shall give an iterative thresholding algorithm for decoding
- At each step it will choose a set $\overline{\Lambda}_j$ of coordinates (of x) where inner products with residuals are large

- Let $\Phi(\omega)$ be a random family of $n \times N$ compressed sensing matrices
- We suppose n = am with a and m integers
- Let $\Phi_j := [\phi_1^j, \dots, \phi_N^1]$, $j = 1, \dots, a$, be obtained from the rows $i = jm + 1, \dots, j(m + 1)$ of Φ
- We shall give an iterative thresholding algorithm for decoding
- At each step it will choose a set $\overline{\Lambda}_j$ of coordinates (of x) where inner products with residuals are large
- These coordinates are added to all previously selected coordinates to give the new set $\Lambda_j := \overline{\Lambda}_1 \cup \cdots \cup \overline{\Lambda}_j$ which is our current set of coordinates where we think x is big

- Let $\Phi(\omega)$ be a random family of $n \times N$ compressed sensing matrices
- We suppose n = am with a and m integers
- Let $\Phi_j := [\phi_1^j, \dots, \phi_N^1]$, $j = 1, \dots, a$, be obtained from the rows $i = jm + 1, \dots, j(m + 1)$ of Φ
- We shall give an iterative thresholding algorithm for decoding
- At each step it will choose a set $\overline{\Lambda}_j$ of coordinates (of x) where inner products with residuals are large
- These coordinates are added to all previously selected coordinates to give the new set $\Lambda_j := \overline{\Lambda}_1 \cup \cdots \cup \overline{\Lambda}_j$ which is our current set of coordinates where we think x is big
- There is a threshold parameter $\delta > 0$ which can be chosen for example as 1/8 TAMU 2008 – p. 17/2

• Fix a value of k

- Fix a value of k
- Initial Step: Let $r^1 := y^1 = \Phi_1(x)$ be the initial residual

TAMU 2008 – p. 18/2[,]

- Fix a value of k
- Initial Step: Let $r^1 := y^1 = \Phi_1(x)$ be the initial residual
- $\bar{\Lambda}_1 := \Lambda_1$ is defined as the set of all coordinates ν where $|\langle y^1, \phi_{\nu}^1 \rangle| > \delta k^{-1/2} ||y^1||_{\ell_2}$

- Fix a value of k
- Initial Step: Let $r^1 := y^1 = \Phi_1(x)$ be the initial residual
- $\bar{\Lambda}_1 := \Lambda_1$ is defined as the set of all coordinates ν where $|\langle y^1, \phi_{\nu}^1 \rangle| > \delta k^{-1/2} ||y^1||_{\ell_2}$
- Define x^1 as the least squares minimizer

$$x^{1} := \underset{\sup(z) \subset \Lambda_{1}}{\operatorname{Argmin}} \|y^{1} - \Phi^{1}z\|_{\ell^{2}}$$

- Fix a value of k
- Initial Step: Let $r^1 := y^1 = \Phi_1(x)$ be the initial residual
- $\bar{\Lambda}_1 := \Lambda_1$ is defined as the set of all coordinates ν where $|\langle y^1, \phi_{\nu}^1 \rangle| > \delta k^{-1/2} ||y^1||_{\ell_2}$

TAMU 2008 – p. 18/2′

Define x^1 as the least squares minimizer

$$x^{1} := \underset{\sup(z) \subset \Lambda_{1}}{\operatorname{Argmin}} \|y^{1} - \Phi^{1}z\|_{\ell^{2}}$$

• New residual $r^1 := \Phi_2(x - x^1) = y^2 - \Phi_2(x^1)$

- Fix a value of k
- Initial Step: Let $r^1 := y^1 = \Phi_1(x)$ be the initial residual
- $\bar{\Lambda}_1 := \Lambda_1$ is defined as the set of all coordinates ν where $|\langle y^1, \phi_{\nu}^1 \rangle| > \delta k^{-1/2} ||y^1||_{\ell_2}$
- Define x^1 as the least squares minimizer

$$x^{1} := \underset{\sup(z) \subset \Lambda_{1}}{\operatorname{Argmin}} \|y^{1} - \Phi^{1}z\|_{\ell^{2}}$$

- New residual $r^1 := \Phi_2(x x^1) = y^2 \Phi_2(x^1)$
- General Step: Repeat the above with r^1 replaced by r^j and Φ_1 replaced by Φ_j

TAMU 2008 – p. 18/2′

• We do not want sets with cardinality larger than 2k

- We do not want sets with cardinality larger than 2k
- If the size of $\Lambda_j := \overline{\Lambda}_1 \cup \ldots \cup \overline{\Lambda}_j$ exceeds 2k trim back to 2k coordinates by removing elements from $\overline{\Lambda}_j$

TAMU 2008 – p. 19/21

- We do not want sets with cardinality larger than 2k
- If the size of $\Lambda_j := \overline{\Lambda}_1 \cup \ldots \cup \overline{\Lambda}_j$ exceeds 2k trim back to 2k coordinates by removing elements from $\overline{\Lambda}_j$

TAMU 2008 – p. 19/21

• This gives the output set Λ

- We do not want sets with cardinality larger than 2k
- If the size of $\Lambda_j := \overline{\Lambda}_1 \cup \ldots \cup \overline{\Lambda}_j$ exceeds 2k trim back to 2k coordinates by removing elements from $\overline{\Lambda}_j$
- This gives the output set Λ
- \bar{x} is the least squares solution for this Λ using y^j and Φ_j

- We do not want sets with cardinality larger than 2k
- If the size of $\Lambda_j := \overline{\Lambda}_1 \cup \ldots \cup \overline{\Lambda}_j$ exceeds 2k trim back to 2k coordinates by removing elements from $\overline{\Lambda}_j$
- This gives the output set Λ
- \bar{x} is the least squares solution for this Λ using y^j and Φ_j
- otherwise stop at step j = a and output $\overline{x} := x^a$

The next slide will give an instance optimality for this algorithm

- The next slide will give an instance optimality for this algorithm
- Here are the assumptions on the random family $\Phi(\omega)$, $\omega \in \Omega$ for this theorem to hold

TAMU 2008 – p. 20/2[,]

- The next slide will give an instance optimality for this algorithm
- Here are the assumptions on the random family $\Phi(\omega)$, $\omega \in \Omega$ for this theorem to hold

TAMU 2008 – p. 20/2[,]

• The entries of Φ are independent

- The next slide will give an instance optimality for this algorithm
- Here are the assumptions on the random family $\Phi(\omega)$, $\omega \in \Omega$ for this theorem to hold
 - The entries of Φ are independent
 - Given $\delta > 0$ and $x \in \mathbb{R}^N$ with probability $\geq 1 C_1 e^{-c_1 n \delta^2}$ we have

 $|\|\Phi(x)\|_{\ell_2} - \|x\|_{\ell_2}| \le \delta \|x\|_{\ell_2}$

- The next slide will give an instance optimality for this algorithm
- Here are the assumptions on the random family $\Phi(\omega)$, $\omega \in \Omega$ for this theorem to hold
 - The entries of Φ are independent
 - Given $\delta > 0$ and $x \in \mathbb{R}^N$ with probability $\geq 1 C_1 e^{-c_1 n \delta^2}$ we have

 $|||\Phi(x)||_{\ell_2} - ||x||_{\ell_2}| \le \delta ||x||_{\ell_2}$

• Given $\delta > 0$, $l \in \{1, ..., N\}$ and $z \in \mathbb{R}^n$ with probability $\geq 1 - C_1 e^{-c_1 n \delta^2}$ we have

 $|\langle z, \phi_l \rangle| \le \delta \|z\|_{\ell_2}$

- The next slide will give an instance optimality for this algorithm
- Here are the assumptions on the random family $\Phi(\omega)$, $\omega \in \Omega$ for this theorem to hold
 - The entries of Φ are independent
 - Given $\delta > 0$ and $x \in \mathbb{R}^N$ with probability $\geq 1 C_1 e^{-c_1 n \delta^2}$ we have

 $|||\Phi(x)||_{\ell_2} - ||x||_{\ell_2}| \le \delta ||x||_{\ell_2}$

• Given $\delta > 0$, $l \in \{1, ..., N\}$ and $z \in \mathbb{R}^n$ with probability $\geq 1 - C_1 e^{-c_1 n \delta^2}$ we have

 $|\langle z, \phi_l \rangle| \le \delta \|z\|_{\ell_2}$

TAMU 2008 – p. 20/2[,]

These properties hold for Gaussian and Bernouli

Thresholding Theorem

THEOREM: Given any $0 < \delta \leq 1/8\sqrt{3}$ and given any r, s > 0. The thresholding decoder applied with this choice of δ where the random matrices are of size $n \times N$ with n = am and $a := \lceil r \log N \rceil$ gives the following. For any $x \in \mathbb{R}^N$, with probability $\geq 1 - n^{-s}$ the decoded vector \overline{x} of the above greedy decoder satisfies

 $||x - \bar{x}||_{\ell_2} \le n^{-r} ||x|| + 198\sigma_k(x),$

TAMU 2008 – p. 21/2′

for any $k \leq c(\delta, s)n/(\log N)^2$.

• Loss of a logarithm in the range of k

Thresholding Theorem

THEOREM: Given any $0 < \delta \leq 1/8\sqrt{3}$ and given any r, s > 0. The thresholding decoder applied with this choice of δ where the random matrices are of size $n \times N$ with n = am and $a := \lceil r \log N \rceil$ gives the following. For any $x \in \mathbb{R}^N$, with probability $\geq 1 - n^{-s}$ the decoded vector \overline{x} of the above greedy decoder satisfies

 $||x - \bar{x}||_{\ell_2} \le n^{-r} ||x|| + 198\sigma_k(x),$

TAMU 2008 – p. 21/2′

for any $k \leq c(\delta, s)n/(\log N)^2$.

- Loss of a logarithm in the range of k
- Do not quite have instance optimality

Thresholding Theorem

THEOREM: Given any $0 < \delta \leq 1/8\sqrt{3}$ and given any r, s > 0. The thresholding decoder applied with this choice of δ where the random matrices are of size $n \times N$ with n = am and $a := \lceil r \log N \rceil$ gives the following. For any $x \in \mathbb{R}^N$, with probability $\geq 1 - n^{-s}$ the decoded vector \overline{x} of the above greedy decoder satisfies

 $||x - \bar{x}||_{\ell_2} \le n^{-r} ||x|| + 198\sigma_k(x),$

TAMU 2008 — p. 21/2

for any $k \leq c(\delta, s)n/(\log N)^2$.

- Loss of a logarithm in the range of k
- Do not quite have instance optimality
- Fine for any numerical purpose