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Dual Formulation

Going back to the original ROF model:

E2(u) =
∫
D
|∇u|+λ

∫
D
(f −u)2 dx

The standard minimization method is gradient descent.

However, the function is non-di�erentiable due to TV term.

It is therefore necessary to regularize it:

E ε
2 (u) =

∫
D

√
|∇u|2 + ε2 +λ

∫
D
(f −u)2 dx



Dual Formulation

The resulting gradient �ow is:

ut = ∇ ·

(
∇u√
|∇u|2 + ε2

)
+2λ (f −u)

This equation is started from a suitable initial guess.

It is solved for large times, until steady state is approached.

Numerically, it is di�cult to solve e�ciently.

A main di�culty: ε is a sti�ness parameter:

The smaller the ε , the larger the number of iterations.



Dual Formulation

Original Idea due to Chan, Golub, Mulet'95:

Introduce the dual variable

g =
∇u

|∇u|
.

Represents the normal to level sets.

Linearize the (u,w) system:

f (w ,u) = w |∇u|−∇u = 0

g(w ,u) = ∇ ·w +λ (u− f ) = 0

UPSHOT: The (w ,u) is much better behaved than the

original EL equation.

Can do e.g. Newton iteration on it.



Dual Formulation

Residual vs. Iteration ‖un−utrue‖ vs. Iteration



Dual Formulation

Related Idea: Chan, Carter, Vandenbherge'01. Write the problem as

min
u

max
|g |≤1

∫
D
u∇ ·g +λ (f −u)2 dx

Now, interchange the min and the max:

max
|g |≤1

min
u

∫
D
u∇ ·g +λ (f −u)2 dx

A stadard theorem says: The two problems are equivalent, i.e. the

pair (u,v) solves the �rst i� it solves the second.

esedoglu
Typewritten Text
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Dual Formulation

max
|g |≤1

min
u

∫
D
u∇ ·g +λ (f −u)2 dx︸ ︷︷ ︸

The inner minimization is pointwise and can be solved easily:

u = f − 1

2λ
∇ ·g

Substitute back in:

max
|g |≤1

∫
D
f ∇ ·g − 1

4λ
(∇ ·g)2 dx



Dual Formulation

The Dual Problem:

max
|g |≤1

∫
D
f ∇ ·g − 1

4λ
(∇ ·g)2 dx

Non-di�erentiability is cured.

However, now there is a pointwise constraint.

One can apply standard constrained optimization techniques

(Chan, Carter, Vandenberghe'01):

Barrier methods,

Interior point methods,

Penalty methods.

However, a more direct technique is desirable.



Dual Formulation

An idea due to Chambolle'02: Start by writing down the optimality

conditions:

1 If at a ponit x we have |g(x)|< 1 (i.e. constraint is not

active), then:

−∇f +
1

2λ
∇(∇ ·g) = 0.

2 If on the other hand we have |g(x)|= 1(i.e. constraint is

active), then:

−∇f +
1

2λ
∇(∇ ·g)+ µg = 0

where µ is a Lagrange multiplier.



Dual Formulation

Key observation: In either case, we have:

µ =

∣∣∣∣∇(f − 1

2λ
∇ ·g

)∣∣∣∣
Hence, the poinwise Lagrange multiplier µ = µ(x) can be can be

eliminated:

−∇

(
f − 1

2λ
∇ ·g

)
+

∣∣∣∣∇(f − 1

2λ
∇ ·g

)∣∣∣∣= 0

Optimality condition is now non-di�erentiable, but continuous.

This equation can now be solved via some �xed point iteration.



Dual Formulation

Fixed point iteration of Chambolle for discrete version:

g0

i ,j = 0;

gn+1

i ,j =
gn
i ,j +δ t

(
∇

(
1

2λ
∇ ·gn

i ,j − fi ,j

))
1+δ t

∣∣∣∇( 1

2λ
∇ ·gn

i ,j − fi ,j

)∣∣∣
where δ t is the �time step� size.

Upshot: Now that we have a convex formulation of the

segmentation problem, we can use this convex duality

technique on it.

• Bresson, Esedoglu, Osher, Vandergheynst, Thiran'05.



Dual Formulation

Subsequent work of Aujol, Gilboa, Chan, Osher'05 extended dual

formulation to the TV+L1 case:

Introduce an auxiliary variable v :

min
u,v

∫
D
|∇u|+ 1

θ
(f −u− v)2 dx +λ |v |dx

As θ → 0+, model converges to original TV+L1.

Can be minimized by alternate minimization:

For �xed v , solve for u using Chambolle:

min
u

∫
D

|∇u|+ 1

θ
(f −u−v)2 dx ,

For �xed u, solve for v ⇒ Thresholding.

min
v

∫
1

θ
(f −u−v)2 +λ |v |dx .



Dual Formulation

Recall our functional:

min
0≤u(x)≤1

∫
D
|∇u|+λ

∫
D
A(x)u dx

where

A(x) := (c1− f (x))2− (c2− f (x))2.

Several issues:

There is a constraint on the primal variable.

Unlike the ROF model, the functional is not strictly convex.

⇒ We cannot apply Chambolle's technique directly.



Dual Formulation

Recall that we dealt with the constraint via an exact penalty term:

z(ξ ) = max{−ξ ,0,ξ −1} for ξ ∈ R.

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2
ν(ξ) vs. ξ



Dual Formulation

It was then easy to show that the original problem

min
0≤u(x)≤1

∫
D
|∇u|+λ

∫
D
A(x)u dx

is equivalent to

min
u

∫
D
|∇u|+λ

∫
D

λA(x)u+ γz(u)dx

whenever γ is large enough (compared to λ ).

⇒ Now we have an unconstrained, convex but not strictly convex

functional.



Dual Formulation

Motivated by previous works of Aubert, Aujol, Chambolle, Gilboa,

Chan, and Osher on generalizing Chambolle's duality technique,

introduce an auxiliary variable v:

min
u,v

∫
D
|∇u|+

∫
D

1

θ
(u− v)2 +λA(x)v + γz(v)dx

The term 1

θ
(u− v)2 forces v ≈ u as θ → 0+.

Two step, alternating minimization algorithm:

1 Freeze v and minimize w.r.t. u,

2 Freeze u and minimize w.r.t.v .



Dual Formulation

Step 1: Minimization w.r.t. u:

min
u

∫
D
|∇u|+

∫
D

1

θ
(u− v)2 dx

This is nothing other than ROF model with v(x) as the given

image and 1

θ
as the �delity constant.

We can use Chambolle's duality based algorithm directly:

gn+1

i ,j =
gn
i ,j +δ t

(
∇

(
1

2λ
∇ ·gn

i ,j − vi ,j

))
1+δ t

∣∣∣∇( 1

2λ
∇ ·gn

i ,j − vi ,j

)∣∣∣
where g is the dual variable for u.



Dual Formulation

Step 2: Minimization w.r.t. v :

min
v

∫
D

1

θ
(u− v)2 +λA(x)v + γz(v)dx

This is a pointwise minimization (just minimize the integrand

at every x). The result is easily found to be:

v(x) = min

{
max

{
θλ

2
A(x)+u(x),0

}
,1

}



Convex Formulation

Algorithm

1 Given un, update the constants c1 and c2 as follows:

c1 =

∫
fun dx∫
un dx

and c2 =

∫
f (1−un)dx∫
(1−un)dx

.

2 Given vn, update g by one or more steps of

gn+1

i ,j =
gn
i ,j +δ t

(
∇

(
1

2λ
∇ ·gn

i ,j − vn
i ,j

))
1+δ t

∣∣∣∇( 1

2λ
∇ ·gn

i ,j − vn
i ,j

)∣∣∣ .

3 Given un+1, c1, and c2, update vn as:

vn+1(x) = min

{
max

{
θλ

2
A(x)+un+1(x),0

}
,1

}
where A(x) = (c1− f )2− (c2− f )2.



Example

Given image



Example

Evolution under our algorithm



Example

Stationary state reached



Example

Graph of the stationary state



Example

Edge set found



Convex Formulation: Summary

Motivated by the TV+L1 model, we found:

1 Certain important shape optimization problems in computer

vision, such as

1 Shape denoising,
2 Two-phase segmentation,

can be reduced to convex, image denoising type problems.

2 Since these image denoising models turn out to be ROF type

and convex, this opens the door to global minima, convex

optimization techqniques , duality, etc.
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Purpose

Goal

Find a proper analogue of Rudin-Osher-Fatemi total variation
denoising model for surface fairing.

The model should remove undesired oscillations.

The model should preserve sharp corners and edges.

Matt Elsey and Selim Esedoḡlu Analogue of R.O.F. for Surfaces



The R.O.F. Model - Particular Case

Consider total variation in one spatial dimension:

TV (u) =

∫ 1

0
|u′(x)|dx ,

on the interval [0, 1], and with boundary conditions u(0) = 0 and
u(1) = 1.

Matt Elsey and Selim Esedoḡlu Analogue of R.O.F. for Surfaces



The R.O.F. Model - Particular Case

The first two above figures have the same total variation of 1,
but the third figure has total variation > 1.

The total variation computation does not recognize any
difference between discontinuous and smooth curves.

Monotonic functions have minimal total variation among all
functions u satisfying the boundary conditions.

The TV regularization will not act on the first two functions,
but will force the third function to evolve until it is monotone.

Matt Elsey and Selim Esedoḡlu Analogue of R.O.F. for Surfaces



The R.O.F. Model - Particular Case

UPSHOT:

In 1D, the TV regularization treats monotone signals as

noise-free.

When proposing regularization terms, we should think of

objects (signals, images, sets) they leave invariant: These are

treated as noise-free by the model.

To �nd the correct generalization of TV regularization to

geometry processing:

Think of the analogue of monotone signals,
Find a regularization term that leaves them invariant.

Matt Elsey and Selim Esedoglu Analogue of R.O.F. for Surfaces

esedoglu
Typewritten Text
Related line of thought: Blomgren & Chan'98 on
ROF for color images.



Curves in the Plane

Extension of R.O.F. to Curves in the Plane

As a step towards surfaces, consider simple closed curves in the
plane. Again, we have two major requirements for our model:

The model should remove undesired oscillations.

The model should preserve sharp corners.

Matt Elsey and Selim Esedoḡlu Analogue of R.O.F. for Surfaces



Curves in the Plane

⇒ We want a regularization term that:

Penalizes oscillations in the direction of the normal,
Allows discontinuities in the direction of the normal.

Analogy to ROF: Curves whose normals vary monotonically

around the curve should have minimal energy (i.e. noise-free).

Example: Convex curves! Intuitively, it's reasonable to treat

them as noise-free.

Goal: Find a regularization that assigns convex curves minimal

energy while penalizing oscillations.

Matt Elsey and Selim Esedoglu Analogue of R.O.F. for Surfaces



Curves in the Plane

We anticipate an energy of the form∫
∂Σ

∣∣∣∣ ∂

∂ s
n(s)

∣∣∣∣ ds
where n(s) is the unit ourward normal, and s is the arclength

parameter.

But this is equivalent to ∫
∂Σ
|κ(s)|ds

where κ is the curvature of the curve.

Matt Elsey and Selim Esedoglu Analogue of R.O.F. for Surfaces



Level Set Formulation

These types of curvature dependent functionals arise in:

Image inpainting: Euler's elastica, CCD, etc.∫
∂Σ

κ
2 ds

Chan & Shen'01; Chan, Shen, Kang'02: Introduced these
models, gave level set implementations.
Phase �eld implementation: Esedoglu & Shen'02.

Segmentation with depth: 2.1D Model of Mumford, Nitzberg,

and Shiota.

Phase �eld implementation by Esedoglu, March'02.
Level set implementation by Zhu, Esedoglu, Chan'05.

Matt Elsey and Selim Esedoglu Analogue of R.O.F. for Surfaces



Curves in the Plane

Recall that the winding number of a curve Γ,

W =
1

2π

∫
Γ

κ ds

is a topological invariant: For any smooth, simple, closed curve

Γwe have ∫
Γ

κ ds = 2π.

Matt Elsey and Selim Esedoglu Analogue of R.O.F. for Surfaces



Curves in the Plane

Proposed Regularization

Total Absolute Curvature =
∫

∂Σ
|κ|ds

We then have ∫
∂Σ
|κ|ds ≥

∫
∂Σ

κ ds = 2π.

Equality attained i� κ is always positive on ∂ Σ.

⇒ (Fenchel) A simple closed curve has minimal energy i� it is

convex.

UPSHOT: This model treats convex shapes, and only convex

shapes, as perfectly clean (noise-free).

Matt Elsey and Selim Esedoglu Analogue of R.O.F. for Surfaces



Level Set Formulation

Let u be a level set function representing a curve ∂Σ:

∂Σ = {(x , y) : u(x , y) = 0}.

Then the energy E is given by:

E (u) =

∫
∂Σ
|κ|dσ

=

∫
R2

|∇H(u)|
∣∣∣∣∇ · ( ∇u

|∇u|

)∣∣∣∣dx ,

where H(u) is the Heaviside function.

Matt Elsey and Selim Esedoḡlu Analogue of R.O.F. for Surfaces



Level Set Formulation

This functional can be minimized by the flow:

∂u

∂t
= |∇u|∇ · ~V ,

where ~V is given by:

~V =
∇u

|∇u|
|κ| − 1

|∇u|
(I− P)(∇{sign(κ)|∇u|}),

and where I is the identity vector and P(~v) =
(
~v · ∇u
|∇u|

) ∇u
|∇u| .

Matt Elsey and Selim Esedoḡlu Analogue of R.O.F. for Surfaces



Level Set Result

Matt Elsey and Selim Esedoglu Analogue of R.O.F. for Surfaces



Polygonal Curve Formulation

This problem can also be approached in the context of a
polygonal curve.

Let the curve be defined by a set of vertices:

{(x0, y0), (x1, y1), ..., (xn, yn)},

where x0 = xn and y0 = yn on a closed curve.

Then the proper energy is:

E =
n−1∑
i=0

|θi |

=
n−1∑
i=0

∣∣∣∣cos−1

(
~vi+1 · ~vi

|~vi+1||~vi |

)∣∣∣∣,
where ~vi =< xi+1 − xi , yi+1 − yi >.

Matt Elsey and Selim Esedoḡlu Analogue of R.O.F. for Surfaces



Polygonal Curve Formulation

Matt Elsey and Selim Esedoḡlu Analogue of R.O.F. for Surfaces



Polygonal Curve Formulation

Elementary fact: With this de�nition of discrete curvature, same

statement as before holds:

Theorem of Turning Tangents

For a polygonal curve {(xj ,yj)}nj=1:

n

∑
j=1

|θj |= 2π

if and only if the polygon is convex.

UPSHOT: With this discretization, fundamental property of

our model remains intact: Convex curves, and only convex

curves, are treated as noise-free.

Gradient descent ⇒ A system of ODEs for vertex coordinates

(xj(t),yj(t)).

Matt Elsey and Selim Esedoglu Analogue of R.O.F. for Surfaces



Polygonal Curve Formulation

Matt Elsey and Selim Esedoglu Analogue of R.O.F. for Surfaces



Polygonal Curve Formulation

Matt Elsey and Selim Esedoglu Analogue of R.O.F. for Surfaces



Polygonal Curve Formulation

Matt Elsey and Selim Esedoglu Analogue of R.O.F. for Surfaces



Extending R.O.F. Model to Surfaces

Goal

• Find the natural analogue of the ROF total variation

regularization for geometry processing, so that:

The model treats convex shapes as noise-free:

All convex shapes should have identical and minimal energy,
Corners and edges should be preserved.

The model should penalize spurious oscillations.

Matt Elsey and Selim Esedoglu Analogue of R.O.F. for Surfaces



Extending R.O.F. Model to Surfaces

Prior work on extending image processing models to surface fairing:

Smooth surface recovery (no edge or corner preservation):

Mean curvature �ow, Willmore �ow:∫
∂ Σ

dσ ,

∫
∂ Σ

(κ1 + κ2)2 dσ

Desbrun, Meyer, Schroeder, Barr'99; Clarenz, Dzuik, Rump'03

Analogues of Perona-Malik model:

Non-convex functions of combinations of principal curvatures:∫
∂ Σ

g(κ
2

1
+ κ

2

2
)dσ

by Whitaker, Tasdizen, Burchard, Osher'02; Desbrun,
Schroeder, Rump, etc.
Level set implementations by these authors.

Notes: No real explanation for which combination of principal

curvatures should arise; Perona-Malik can be very non-robust even

for images.
Matt Elsey and Selim Esedoglu Analogue of R.O.F. for Surfaces



Extending R.O.F. Model to Surfaces

Other relevant work:

H. Hoppe, T. DeRose, T. Duchamp, et. al. Piecewise smooth

surface reconstruction. 1994.

S. Fleishman, I. Drori, D. Cohen-Or. Bilateral mesh denoising.

2003.

T. Jones, F. Durand, M. Desbrun. Feature-preserving mesh

smoothing. 2003.

S. Yoshizawa, A. Belyaev, H. P. Seidel. Smoothing by

example: Mesh denoising by averaging with similarity-based

weights. 2006.

B. Dong, J. Ye, S. Osher, I. Dinov. Level set based nonlocal

surface restoration. UCLA CAM Report, October 2007.

Matt Elsey and Selim Esedoglu Analogue of R.O.F. for Surfaces



Extending R.O.F. Model to Surfaces

Motivation:

The R.O.F. model is much better behaved than Perona-Malik

type models in case of image processing: Complete

well-posedness theory.

We would expect the proper analogue of R.O.F. for surface

processing to also be better behaved.

Moreover, for R.O.F., there is a natural analogue: No need to

wonder which combination of principal curvatures should arise.

Matt Elsey and Selim Esedoglu Analogue of R.O.F. for Surfaces



Geometric Preliminaries

Motivation: Need energy functional treating convex objects as
noise-free.

The Euler Characteristic

The Euler characteristic, χ, is a topological invariant for surfaces
analagous to the winding number for curves.

χ = 0 χ = 2 χ = 2

Matt Elsey and Selim Esedoḡlu Analogue of R.O.F. for Surfaces



The Gauss-Bonnet Theorem

The Gauss-Bonnet theorem relates the Euler characteristic to
Gaussian curvature as the winding number relates to the curvature
of planar curves.

Gauss-Bonnet Theorem

For a closed surface ∂Σ,

χ(∂Σ) =
1

2π

∫
∂Σ
κGdσ,

where κG = κ1 · κ2, and κ1 and κ2 are the principal curvatures.

Matt Elsey and Selim Esedoḡlu Analogue of R.O.F. for Surfaces



Our Model

Regularization

Total absolute Gaussian curvature.∫
∂Σ
|κG |dσ

For surfaces ∂Σ topologically equivalent to the sphere,∫
∂Σ
|κG |dσ ≥

∫
∂Σ
κGdσ = 4π,

where equality holds for convex surfaces (κG ≥ 0 everywhere).

This regularization term has no bias for or against sharp edges and
corners.

Matt Elsey and Selim Esedoḡlu Analogue of R.O.F. for Surfaces



Our Model

Regularization

Total absolute Gaussian curvature.∫
∂Σ
|κG |dσ

For surfaces ∂Σ topologically equivalent to the sphere,∫
∂Σ
|κG |dσ ≥

∫
∂Σ
κGdσ = 4π,

where equality holds for convex surfaces (κG ≥ 0 everywhere).

This regularization term has no bias for or against sharp edges and
corners.

Matt Elsey and Selim Esedoḡlu Analogue of R.O.F. for Surfaces



Our Model

Both surfaces have minimal total absolute Gaussian curvature.

Matt Elsey and Selim Esedoḡlu Analogue of R.O.F. for Surfaces



Our Model

UPSHOT: For the proposed model, all convex shapes have

identical and minimal energy ⇒ They are treated as clean.

Question: What else has minimal energy?

Claim

If a smooth, compact surface ∂ Σ has minimal regularization energy,

i.e. ∫
∂Σ
|κG |dσ = 4π,

then Σ is convex.

⇒ Only convex shapes are treated as completely noise-free.

Matt Elsey and Selim Esedoglu Analogue of R.O.F. for Surfaces



Our Model

Proof: Let Σ be a compact set with smooth boundary such that∫
∂Σ
|κG |dσ = 4π.

Assume that Σ is not convex.

Then, there exists a point p ∈ ∂ Σ such that the tangent plane

at p is not a support plane...

i.e. Σ lies on both sides of the tangent plane at p.

p

n(p)

T(p)

Consider the height function h(x) = (x−p) ·n(p) in the

direction of the outer normal n(p) at p.

Matt Elsey and Selim Esedoglu Analogue of R.O.F. for Surfaces



Our Model

Since part of the surface lies on the side of T (p) pointed to by

n(p),
max
x∈∂Σ

h(x) > 0.

Let q ∈ ∂ Σ be a maximizer of h(x) on ∂ Σ:

h(q) = max
x∈∂Σ

h(x) > 0.

p

n(p)

T(p)

q

Since h(x) is maximal at q, the normal n(q) at q should point

in the same direction as n(p).

Matt Elsey and Selim Esedoglu Analogue of R.O.F. for Surfaces



Our Model

p

n(p)

T(p)

q

n(q)

But then, a neighborhood Np of p and a neighborhood Nq of

q disjoint from Np on ∂ Σ covers the same patch on S2 under

the Gauss map:

There is a neighborhood N ⊂ S2 such that N ⊂ π(Np)∩π(Nq).

Therefore, ∫
∂Σ
|κG |dσ >

∫
S2
dσ = 4π.

Matt Elsey and Selim Esedoglu Analogue of R.O.F. for Surfaces



Our Model

UPSHOT:

For the proposed model, all convex shapes, and only the

convex shapes, have minimal energy and are treated as

completely noise free.

Analogy with R.O.F. becomes clearer:

1D ROF treats monotone ≈one-to-one functions as noise-free.
Proposed model treats surfaces with ≈one-to-one Gauss maps
as noise-free.
Analogue of one-to-one functions is surfaces with one-to-one
Gauss maps.

Matt Elsey and Selim Esedoglu Analogue of R.O.F. for Surfaces



Extension to Other Surfaces

Definition

A surface ∂Σ is said to be tight if:

2π(4− χ(∂Σ)) =

∫
∂Σ
|κG |dA.

Convex surfaces are tight.

Tightness generalizes the notion of convexity to surfaces ∂Σ
not topologically equivalent to the sphere (e.g. torus).

Tight surfaces are treated as noise-free by our proposed
regularization

Matt Elsey and Selim Esedoḡlu Analogue of R.O.F. for Surfaces



Extension to Other Surfaces

Definition

A surface ∂Σ is said to be tight if:

2π(4− χ(∂Σ)) =

∫
∂Σ
|κG |dA.

Convex surfaces are tight.

Tightness generalizes the notion of convexity to surfaces ∂Σ
not topologically equivalent to the sphere (e.g. torus).

Tight surfaces are treated as noise-free by our proposed
regularization

Matt Elsey and Selim Esedoḡlu Analogue of R.O.F. for Surfaces



Extension to Other Surfaces

Theorem: T.F. Banchoff and W. Kühnel

A surface ∂Σ is tight iff. it has the two-piece property : Every
plane cuts ∂Σ into at most two pieces.

Our model extends appropriately to surfaces not topologically
equivalent to the sphere.

Surface oscillations violate two-piece property (⇒ not tight).

Tight surfaces have minimal
∫
∂Σ |κG |dσ.

Reference:
• T.F. Banchoff and W. Kühnel . Tight Submanifolds, Smooth and Polyhedral.

Eds. S.S. Chern and T. Cecil, Cambridge Univ. Press (1997), pp. 51-118.

Matt Elsey and Selim Esedoḡlu Analogue of R.O.F. for Surfaces



Computing Total Absolute Gaussian Curvature

Given a level set function u, and a surface ∂Σ defined by

∂Σ = {(x , y , z) : u(x , y , z) = 0},

the proposed energy functional is given by:

E (u) =

∫
∂Σ
|κG |dσ

=

∫
∂Σ

1

|∇u|

∣∣∣∣ 3∑
i ,j=1

BiBjCij

∣∣∣∣dσ,
where ~B =< ux , uy , uz >, and Cij is the ij-cofactor of the matrix
A, given by:

A =

 uxx uxy uxz

uyx uyy uyz

uzx uzy uzz


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Computing Total Absolute Gaussian Curvature

Gaussian curvature can be computed as a combination of total
curvature and mean curvature:

κG = κ1 · κ2

=
1

2

(
κ2

1 + 2(κ1 · κ2) + κ2
2 − κ2

1 − κ2
2

)
=

1

2

(
(κ1 + κ2)2 − (κ2

1 + κ2
2)

)
=

1

2

(
Mean Curvature2 − Total Curvature

)
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Computing Total Absolute Gaussian Curvature

The Euler-Lagrange equations for this energy functional give a
difficult fourth-order PDE.

This level set formulation appears hard to approach
numerically.

To test our method, we chose to work with triangulated
surfaces.
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An Alternative Approach

Test model using triangulated surfaces instead of level sets.

Definition

Gaussian curvature at any vertex x of a triangulated surface is
given by: 2π − (sum of interior angles at x of triangles containing
x):

κG (x) = 2π − θ(x),

where θ(x) is defined as above, and called the total angle around
the vertex x .

Note: At any non-vertex point on a triangulation, Gaussian
curvature is reasonably defined to be 0.

Reference:
• T.F. Banchoff. Critical Points and Curvature for Embedded Polyhedral

Surfaces. J. Diff. Geo.. 3 (1967), pp. 257-268.
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An Alternative Approach

Total angle at x , the vertex atop the pyramid, is θ(x) =
∑4

i=1 θi .
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An Alternative Approach

Theorem: T.F. Banchoff

The Gauss-Bonnet theorem holds exactly for triangulated surfaces
with the prior definition of Gaussian curvature.

χ(∂Σ) =
1

2π

∫
∂Σ
κGdσ =

1

2π

∑
i

κG (xi ),

where i indexes the vertices of the triangulation.

Reference:
• T.F. Banchoff. Critical Points and Curvature for Embedded Polyhedral

Surfaces. J. Diff. Geo.. 3 (1967), pp. 257-268.
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Triangulated Surface Total Absolute Gaussian Curvature

Want surfaces with minimal discrete energy to have the
two-piece property (i.e. to be tight).

The natural discretization for our proposed model would be:∑
i

|κG (xi )| =
∑

i

|2π − θ(xi )|

This expression turns out to be incorrect. Surfaces with
minimal energy need not have the two-piece property.
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Triangulated Surface Total Absolute Gaussian Curvature

For this triangulation, we find that∑
i

|κG (xi )| =
∑

i

|2π − θ(xi )| = 4π.

This triangulation should have total abs. Gaussian curvature > 4π
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Triangulated Surface Total Absolute Gaussian Curvature

Definition: Positive Curvature

The positive curvature: κ+(x):

Define Star(x) to be the set of all triangular faces incident to x .

If x lies on the convex hull of Star(x), then
κ+(x) = 2π − φ(x), where φ(x) is the total angle around the
triangulation of the convex hull of Star(x) at the vertex x .

Otherwise, κ+(x) = 0.

Reference:
• T.F. Banchoff and W. Kühnel . Tight Submanifolds, Smooth and Polyhedral.

Eds. S.S. Chern and T. Cecil, Cambridge Univ. Press (1997), pp. 51-118.
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Triangulated Surface Total Absolute Gaussian Curvature

Theorem: T.F. Banchoff and W. Kühnel

Using the definitions:

The Gaussian curvature: κG (x) = 2π − θ(x)

The positive curvature: κ+(x)

The negative curvature: κ−(x) = κ+(x)− κG (x) ≥ 0

Then the absolute Gaussian curvature is given by:
κ̂(x) = κ+(x) + κ−(x) = 2κ+(x)− κG (x)

Note: As κ+(x) ≥ 0 and κ+(x) ≥ κG (x), κ̂(x) ≥ 0.

Reference:
• T.F. Banchoff and W. Kühnel . Tight Submanifolds, Smooth and Polyhedral.

Eds. S.S. Chern and T. Cecil, Cambridge Univ. Press (1997), pp. 51-118.
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Total Absolute Gaussian Curvature - Illustrations

Convex Saddle Mixed

Proper convex vertex: κ+(x) = κG (x), κ−(x) = 0.

Proper saddle vertex: κ+(x) = 0, κ−(x) = −κG (x).

Mixed vertex: κ+(x) > 0, κ−(x) > 0.
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Smoothness of Absolute Gaussian Curvature Expression

z = 1

A simple test case: Consider a circular surface patch of radius 1
centered around a vertex when the height of the central vertex is
z = 0. In the smooth setting, Gaussian curvature at the central
vertex can be shown to vary as z varies by:

κ̂(z) = 2π

(
1−

√
1

z2 + 1

)
,

a function which is differentiable for all z ∈ R.
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Smoothness of Absolute Gaussian Curvature Expression

Absolute Gaussian Curvature v. Central Vertex Height
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Smoothness of Absolute Gaussian Curvature Expression

Vertex changes types from convex to mixed to saddle.
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Gradient Descent for Triangulated Surfaces

Assume total absolute Gaussian curvature is a smooth
expression.

For a given triangulation, total absolute Gaussian curvature is

E =
∑

i

κ̂(xi ) = C −
∑
m

±θm

Recall: κ̂(x) = 2κ+(x)− κG (x)

The angles θ are expressed

θ = cos−1

(
~v1 · ~v2

|~v1||~v2|

)
,

where ~v =< xk − xj , yk − xj , zk − xj >.

Take partial derivatives w.r.t. the components of each vertex
represented in the expression E blindly.
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Numerical Results
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Matt Elsey and Selim Esedoḡlu Analogue of R.O.F. for Surfaces



Numerical Results
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Numerical Results

Regularized version:
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Numerical Results

Bilateral �ltering:
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Numerical Results
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A Non-Convex Energy

The energy
∫
∂Σ |κG |dσ has no bias for or against sharp edges

and corners.

We may want to produce edges if given heavily smoothed
initial data.

Consider a non-convex function, as in prior work, but of
absolute Gaussian curvature:

E∗ =

∫
∂Σ

ln(C |κG |2 + ε)
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A Non-Convex Energy

γ v. ln(25γ2 + 1)
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A Non-Convex Energy
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Conclusions and Further Work

Conclusions

We have found the natural analogue to the R.O.F. TV
denoising model for surfaces.

It is total absolute Gaussian curvature:
∫
∂Σ |κG |dσ.

On triangulated surfaces, minimizing this energy removes
oscillations while maintaining sharp corners and edges.

Work on triangulated surfaces: Appealing to computer
graphics applications.
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Conclusions and Further Work

Future Work

Continue to look for most effective way to numerically
minimize energy functional.

Determine form of proper fidelity term.

Try to apply a fidelity term and run to steady-state, as in
R.O.F. TV model.
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