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The Outline of the Talk
Compressive Sensing (CS): when `0 ⇔ `1?
An accessible proof and Enhanced CS
Rice L1-Related Optimization Project
– An L1 Algorithm: FPC
– A TV Algorithm: FTVd
– Numerical Results
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Compressive Sensing (CS)

Recover sparse signal from incomplete data:

Unknown signal x∗ ∈ Rn

Measurements: b = Ax∗ ∈ Rm, m < n
x∗ is sparse: #nonzeros ‖x∗‖0 < m

1 Solution to 2 Problems?
`0-Prob: min{‖x‖0 : Ax = b} ⇒ sparsest solution (hard)
`1-Prob: min{‖x‖1 : Ax = b} ⇒ lin. prog. solution (easy)
Recoverability: When does the same x∗ solve both?
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CS Recoverability

When does the following happen? (b = Ax∗)

{x∗} = arg min{‖x‖0 : Ax = b} = arg min{‖x‖1 : Ax = b}

Answer: For a random A ∈ Rm×n,

‖x∗‖0 <
c ·m

log(n/m)
.

— Candes-Romberg-Tao, Donoho et al, 2005
— Rudelson-Vershynin, 2005, 2006
— Baraniuk-Davenport-DeVore-Wakin, 2007 ......
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Recoverability Guarantees

Theoretical guarantees available:

min{‖Φx‖1 : Ax = b}, min{‖Φx‖1 : Ax = b, x ≥ 0}

(Donoho-Tanner 2005, Z 2005)

What about these convex models?

min{‖Φx‖1 + µTV(x) : Ax = b}

min{‖Φx‖1 + µ‖x − x̂‖ : Ax = b}

min{‖Φx‖1 : Ax = b,Bx ≤ c, x ∈ [l ,u]}

· · · · · · · · ·



CS ECS Rice L1 FPC FTVd Numerical Results

CS Analysis

When is `0 ⇔ `1?
Most analyses are based on the notion of RIP:
—Restricted Isometry Property
Or based on “counting faces” of polyhedrons
Derivations are quite involved and not transparent
Generalize CS analysis to more models?

A simpler, gentler, more general analysis?

Yes. Using Kashin-Garnaev-Gluskin (KGG) inequality.

(Extension to Z, CAAM Report TR05-09)
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KGG Result

`1-norm vs. `2-norm:
√

n ≥ ‖v‖1
‖v‖2

≥ 1, ∀v ∈ Rn \ {0}

However, ‖v‖1/‖v‖2 � 1 in most subspaces of Rn.

Theorem: (Kashin 77, Garnaev-Gluskin 84)

Let A ∈ Rm×n be iid Gaussian. With probability > 1− e−c1(n−m),

‖v‖1
‖v‖2

≥ c2
√

m√
log(n/m)

, ∀v ∈ Null(A) \ {0}

where c1 and c2 are absolute constants.
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A Picture in 2D

In most subspaces, ‖v‖1/‖v‖2 ≥ 0.8 ∗
√

2 > 1.1
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Sparsest Point vs. `p-Minimizer, p ∈ (0, 1]

When does the following hold on C ⊂ Rn?

{x∗} = arg min
x∈C
‖x‖0 = arg min

x∈C
‖|x |p‖1

This means: (i) “`0 ⇔ `p” on C, (ii) uniqueness of x∗.

A Sufficient Condition — entirely on sparsity√
‖x∗‖0 <

1
2
‖|v |p‖1
‖|v |p‖2

, ∀ v ∈ (C − x∗) \ {0}

(10-line, elementary proof skipped)



CS ECS Rice L1 FPC FTVd Numerical Results

Recoverability Proved and Generalized

For C = {x : Ax = b, x ∈ S},

C − x∗ = Null(A) ∩ (S − x∗), ∀S ⊂ Rn

[`0 ⇔ `p]⇐ ‖x∗‖
1
2
0 <

1
2
‖|v |p‖1
‖|v |p‖2

, ∀ v ∈ Null(A) ∩ (S − x∗) \ {0}

For a Gaussian random A, by GKK

[`0 ⇔ `p] on C
h.p.⇐= ‖x∗‖0 <

c(p) ·m
log(n/m)

(Stability results also available for noisy data)
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Enhanced Compressive Sensing

ECS: with prior information x ∈ S

min{‖x‖1 : Ax = b, x ∈ S}

We have shown ECS recoverability is at least as good as CS.

More prior information (beside nonnegativity)?

min{‖x‖1 + µTV(x) : Ax = b} ⇒ S = {x : TV(x) ≤ δ}

min{‖x‖1 + µ‖x − x̂‖ : Ax = b} ⇒ S = {x : ‖x − x̂‖ ≤ δ}

...... and many more possibilities.

More ECS models, more algorithmic challenges for optimizers.
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ECS vs. CS: A case study

Unknown signal x∗ close to a prior sparse xp:

ECS: min{‖x‖1 : Ax = b, ‖x − xp‖1 ≤ δ}

With 10% differences in supports and nonzero values,
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Rice L1-Related Optimization Project

Computational & Applied Math. Dept. in Engineering School:
Y. Z., Wotao Yin (Elaine Hale, left)
Students

Optimization Algorithmic Challenges in CS
Large-scale, (near) real-time processing
Dense matrices, non-smooth objectives
Traditional (simplex, interior-point) methods have trouble.

Can convex optimization be practical in CS?
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Convex Optimization Works in CS

Convex Optimization is generally more robust w.r.t noise.

Is it too slow for large-scale applications?

In many cases, it is faster than other approaches.
Solution sparsity helps.
Fast transforms help.
Structured random matrices help.
Efficient algorithms can be built on Av and AT v .
Real-time algorithms are possible for problems
with special structures (like MRI).
2 examples from our work: FPC and FTVd
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Forward-Backward Operator Splitting

Derivation (since 1950’s):

min ‖x‖1 + µf (x) ⇔ 0 ∈ ∂‖x‖1 + µ∇f (x)

⇔ −τµ∇f (x) ∈ τ∂‖x‖1
⇔ x − τµ∇f (x) ∈ x + τ∂‖x‖1
⇔ (I + τ∂‖ · ‖1)x 3 x − τµ∇f (x)

⇔ {x} 3 (I + τ∂‖ · ‖1)−1(x − τµ∇f (x))

⇔ x = shrink(x − τ∇f (x), τ/µ)

Equivalence to Fixed Point

min ‖x‖1 + µf (x) ⇐⇒ x = Shrink(x − τ∇f (x), τ/µ)
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Fixed-point Shrinkage

min
x
‖x‖1 + µf (x)

Algorithm:

xk+1 = Shrink(xk − τ∇f (xk ), τ/µ)

where
Shrink(y , t) = y − Proj[−t ,t](y)

A “first-order” method follows from FB-operator splitting
Discovered in signal processing by many since 2000’s
Convergence properties analyzed extensively
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New Convergence Results (Hale, Yin & Z, 2007)

How can solution sparsity help a 1st-order method?
Finite Convergence: for all but a finite # of iterations,

xk
j = 0, if x∗j = 0

sign(xk
j ) = sign(x∗j ), if x∗j 6= 0

q-linear rate depending on “reduced” Hessian:

lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

≤
κ(H∗EE )− 1
κ(H∗EE ) + 1

where H∗EE is a sub-Hessian of f at x∗ (κ(H∗EE ) ≤ κ(H∗)),
and E = supp(x∗) (under a regularity condition).

The sparser x∗ is, the faster the convergence.
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FPC: Fixed-Point Continuation

x(µ) := arg min
x
‖x‖1 + µf (x)

Idea: approximately follow the path x(µ)

FPC: Set µ = µ0 < µmax, and x0.
Do until µ ≥ µmax

1. Starting from x0, do shrinkage until “converged”
2. Set µ = 2µ, and x0 to the previous “solution”.

End Do

Smaller µ→ sparser x(µ)→ faster convergence
Converges is also fast for larger µ due to ‘warm starts”.
Generally effective, may slow down near ”boundary”.
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Continuation Makes It Kick
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(Numerical comparison results in Hale, Yin & Z 2007)
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Random Kronicker Products Plus FPC

Fully random matrices are computationally costly.

Random Kronicker Products

A = A1 ⊗ A2 ∈ Rm×n,

where we only store A1 (m/p × n/q) and A2 (p × q).

Ax = vec
(

A2XAT
1

)
also requires much less computation.

Trial: n = 1M, m = 250k, ‖x∗‖0 = 25k, p = 500, q = 1000.
2 (500 by 1000) matrices stored (reduction of 0.5M times).
FPC solved the problem in 47s on a PC.
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Total Variation Regularization

Discrete total variation (TV) for an image u:

TV (u) =
∑
‖Diu‖ (sum over all pixels)

(1-norm of the vector of 2-norms of discrete gradients)

Advantage: able to capture sharp edges
Rudin-Osher-Fatemi 1992, Rudin-Osher 1994
Recent Survey: Chan and Shen 2006

Non-smoothness and non-linearity cause computational
difficulties. Can TV be competitive in speed with others
(say, Tikhonov-like regularizers)?
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Fast TV deconvolution (FTVd)

(TV + L2) min
u

∑
‖Diu‖+

µ

2
‖Ku − f‖2

Introducing wi ∈ R2 and a quadratic penalty (Courant 1943):

min
u,w

∑(
‖wi‖+

β

2
‖wi − Diu‖2

)
+
µ

2
‖Ku − f‖2

In theory, u(β)→ u∗ as β →∞. In practice, β = 200 suffices.

Alternating Minimization:
For fixed u, wi can be solved by a 2D-shrinkage.
For fixed w , quadratic can be minimized by 3 FFTs.

(Wang, Yang, Yin &Z, 2007, 2008)
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FTVd
FTVd is a long-missing member of the half-qudratic class
(Geman-Yang 95), using a 2D Huber-like approximation.

FTVd Convergence

Finite convergence for wk
i → 0 (sparsity helps).

Strong q-linear convergence rates for the others
Rates depend on submatrices (sparsity helps).
Continuation accelerates practical convergence.

FTVd Performance
Orders of magnitude faster than Lagged Diffusivity.
Comparable speed with Matlab deblurring, with better
quality. TV models has finally caught up in speed.
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FTVd vs. Lagged Diffusivity
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(Test 1: Lena 512 by 512; Test 2: Man 1024 by 1024)



CS ECS Rice L1 FPC FTVd Numerical Results

FTVd vs. Others
Blurry&Noisy. SNR: 5.19dB ForWaRD: SNR: 12.46dB, t = 4.88s FTVd: β = 25, SNR: 12.58dB, t = 1.83s

deconvwnr: SNR: 11.51dB, t = 0.05s deconvreg: SNR: 11.20dB, t = 0.34s FTVd: β = 27, SNR: 13.11dB, t = 14.10s
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FTVd Extensions
Multi-channel Image Deblurring (paper forthcoming)

cross-channel or within-channel blurring
a “small” number of FFTs per iteration
convergence results have been generalized
TV+L1 deblurring models (codes hard to find)

Other Extensions
higher-order TV regularizers (reducing stair-casing)
multi-term regularizations −→ multiple splittngs
locally weighted TV −→ weighted shrinkage
reconstruction from partial Fourier coefficients (MRI)

min
u

TV (u) + λ‖Φu‖1 + µ‖Fp(u)− fp‖2
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MRI Construction from 15% Coefficients

Original 250 x 250

SNR:14.74, t=0.09

Original 250 x 250

SNR:16.12, t=0.09

Original 250 x 250

SNR:17.72, t=0.08

Original 250 x 250

SNR:16.40, t=0.10

Original 250 x 250

SNR:13.86, t=0.08

Original 250 x 250

SNR:17.27, t=0.10

250 by 250 Images: time ≤ 0.1s on a PC (3 GHz Pentium D).
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Color Image Deblurring

Original image: 512x512 Blurry & Noisy SNR:  5.1dB. deconvlucy: SNR=6.5dB, t=8.9

deconvreg: SNR=10.8dB, t=4.4 deconvwnr: SNR=10.8dB, t=1.4 MxNopt: SNR=16.3dB, t=1.6

Comparison to Matlab Toolbox: 512× 512 Lena
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Summary

Take-Home Messages

CS recoverability can be proved in 1 page via KGG.
Prior information can never degrade CS recoverability,
but may significantly enhance it.
1st-order methods can be fast thanks to solution sparsity
(finite convergence, rates depending on sub-Hessians).
TV models can be solved quickly if structures exploited.
Continuation is necessary to make algorithms practical.
Rice has a long tradition in optim. algorithms/software.
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The End

Software FPC and FTVd available at:

http://www.caam.rice.edu/˜optimization/L1

Thank You!
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