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The Outline of the Talk

@ Compressive Sensing (CS): when (g < /17
@ An accessible proof and Enhanced CS

@ Rice L1-Related Optimization Project

@ — An L1 Algorithm: FPC

@ — ATV Algorithm: FTVd

@ — Numerical Results D
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Ccs

Compressive Sensing (CS)

Recover sparse signal from incomplete data:

@ Unknown signal x* € R”
@ Measurements: b=Ax*c R™, m<n
@ x* is sparse: #nonzeros ||x*|lo < m

1 Solution to 2 Problems?

@ (o-Prob: min{||x|o : Ax = b} = sparsest solution (hard)
@ (4-Prob: min{||x||1 : Ax = b} = lin. prog. solution (easy)
@ Recoverability: When does the same x* solve both?

SSAY
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CS Recoverability

When does the following happen? (b = Ax*)

{x*} =argmin{||x||o : Ax = b} = argmin{||x||1 : Ax = b}

Answer: For a random A € R™*",

c-m

[X*]lo < W-

— Candes-Romberg-Tao, Donoho et al, 2005
— Rudelson-Vershynin, 2005, 2006
(ALY

— Baraniuk-Davenport-DeVore-Wakin, 2007 ...... @
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Recoverability Guarantees

Theoretical guarantees available:
min{||®x||1 : Ax = b}, min{||®x]|: Ax=b,x > 0}
(Donoho-Tanner 2005, Z 2005)

What about these convex models?

min{||®x||1 + uTV(x) : Ax = b}

min{[|®x|l1 + plx — X|| - Ax = b}
min{||®x|[1 : Ax = b,Bx < c,x € [I, u]}

[SSAY
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CS Analysis

Whenis ¢y < 047

@ Most analyses are based on the notion of RIP:
—Restricted Isometry Property

@ Or based on “counting faces” of polyhedrons
@ Derivations are quite involved and not transparent
@ Generalize CS analysis to more models?

A simpler, gentler, more general analysis?
Yes. Using Kashin-Garnaev-Gluskin (KGG) inequality.

(Extension to Z, CAAM Report TR05-09)

SOy
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KGG Result

ﬁz:m:;zt W e R"\ {0}

However, [|v||1/[|v|l2 > 1 in most subspaces of R".

Theorem: (Kashin 77, Garnaev-Gluskin 84)
Let A € R™*" be iid Gaussian. With probability > 1 — e=¢1(7—m),

IvI4 CovV'm
Vi > Iog(n/m)’ Vv € Null(A) \ {0}

where ¢y and ¢, are absolute constants. A
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A Picture in 2D
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In most subspaces, ||v||1/[v]jz > 0.8 % v2 > 1.1 R
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Sparsest Point vs. ¢,-Minimizer, p € (0, 1]

When does the following hold on C c R"?

{x*} = argmin||xlo = argmin [||x||
xeC xeC

This means: (i) “g < ¢,” on C, (ii) uniqueness of x*.

A Sufficient Condition — entirely on sparsity

VIFTo < gyt ¥ e (C=x)\ {0}

(10-line, elementary proof skipped) —
@
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Recoverability Proved and Generalized

ForC={x:Ax=b,x € S},
C—x* = Null(A)n (S —x*), VScR”

TIvIPl
2 [|[v[Pll2

o & o] = IX"|E < Vv e Null(A) N (S — x*)\ {0}

For a Gaussian random A, by GKK

hp c(p) - m
[lo = £p) on C <= ||x*|lo < foa(r/m)
(Stability results also available for noisy data) "\;§
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Enhanced Compressive Sensing

ECS: with prior information x € S

min{||x|[1 : Ax = b,x € S}

We have shown ECS recoverability is at least as good as CS.

More prior information (beside nonnegativity)?

min{|[x]l1 + £ TV(x) : Ax = b} = S={x:TV(x) < 5}
minglix|ls + ullx - XI| : Ax = b} = S={x: [}x - &]| <3}

...... and many more possibilities.

More ECS models, more algorithmic challenges for optimizers.
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ECS vs. CS: A case study

Unknown signal x* close to a prior sparse Xp:

ECS: min{||x||1 : Ax = b, ||x — Xp||1 < 4}

With 10% differences in supports and nonzero values,

Recovery Rate

Maximum Relative Error
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Rice L1

Rice L1-Related Optimization Project

Computational & Applied Math. Dept. in Engineering School:
@ Y. Z., Wotao Yin (Elaine Hale, left)
@ Students

Optimization Algorithmic Challenges in CS

@ Large-scale, (near) real-time processing
@ Dense matrices, non-smooth objectives
@ Traditional (simplex, interior-point) methods have trouble.

Can convex optimization be practical in CS?

SSAY
@
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Convex Optimization Works in CS

Convex Optimization is generally more robust w.r.t noise.

Is it too slow for large-scale applications?

In many cases, it is faster than other approaches.

@ Solution sparsity helps.
@ Fast transforms help.

@ Structured random matrices help.
@ Efficient algorithms can be built on Av and AT v.

@ Real-time algorithms are possible for problems
with special structures (like MRI).

@ 2 examples from our work: FPC and FTVd

&%
@
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FPC

Forward-Backward Operator Splitting

Derivation (since 1950’s):

min||x|ls + uf(x) & 0 € dl|xll +nVi(x)

—ruVH(x) € 79X

x —TuVIi(x) € x4+ 79||x||1

(I+ 70| - |1)x 2 x — TuVE(x)

{x} > (I+70) - )7 (x = TuVH(x))
x = shrink(x — TVf(x),7/n)

te T

Equivalence to Fixed Point

min || x||1 + pf(x) <= x = Shrink(x — TVf(x),7/n)




Fixed-point Shrinkage

min x|}y + i (x)

XK1 = Shrink(x* — 7V F(x¥), /1)

where
Shrink(y, t) = y — Proj_; 4(¥)

@ A “first-order” method follows from FB-operator splitting
@ Discovered in signal processing by many since 2000’s
@ Convergence properties analyzed extensively

SSAY
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New Convergence Results (Hale, Yin & Z, 2007)

How can solution sparsity help a 1st-order method?
@ Finite Convergence: for all but a finite # of iterations,

xk=0, ifx*=0
sign(x{) = sign(x),  if X" #0

@ g-linear rate depending on “reduced” Hessian:

lim sup [T - x|  i(Heg) — 1
k—oo ||Xk - X*H N ’%(HEE) + 1

where Hf. is a sub-Hessian of f at x* (k(Hgg) < k(H")),
and E = supp(x™) (under a regularity condition).

The sparser x* is, the faster the convergence. §§
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FPC: Fixed-Point Continuation

X(u) = argmin x| + uf(x)

Idea: approximately follow the path x(u)

FPC: Set 1 = 1o < ftmax, and Xxo.
Do until u > pimax
1. Starting from xg, do shrinkage until “converged”

2. Set u = 2u, and Xy to the previous “solution”.

End Do J

@ Smaller u — sparser x(u) — faster convergence
@ Converges is also fast for larger ;. due to ‘warm starts”.
@ Generally effective, may slow down near "boundary”. AN
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Continuation Makes It Kick
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FPC

Random Kronicker Products Plus FPC

Fully random matrices are computationally costly.

Random Kronicker Products

A=A ®A ¢ Rmxn,

where we only store Ay (m/p x n/q) and Az (p x Q).

Ax = vec <A2XA1T )

also requires much less computation.

@ Trial: n = 1M, m = 250k, ||x*||o = 25k, p = 500, q = 1000.
@ 2 (500 by 1000) matrices stored (reduction of 0.5M times).
SIS

@ FPC solved the problem in 47s on a PC. @
RICE



Total Variation Regularization

Discrete total variation (TV) for an image u:
TV(u)=> ||Dul| (sum over all pixels)

(1-norm of the vector of 2-norms of discrete gradients)

@ Advantage: able to capture sharp edges
@ Rudin-Osher-Fatemi 1992, Rudin-Osher 1994
@ Recent Survey: Chan and Shen 2006

Non-smoothness and non-linearity cause computational
difficulties. Can TV be competitive in speed with others
(say, Tikhonov-like regularizers)?
(ALY
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Fast TV deconvolution (FTVd)

i . Ky — 112
(TV +12) mumZHD,u||+2HKu f

Introducing w; € R? and a quadratic penalty (Courant 1943):
minS™ (1wl + 2w — D2 ) + 1K — £2
uw 1 2 1 1 2

In theory, u(3) — u* as 8 — oo. In practice, g = 200 suffices.

Alternating Minimization:

@ For fixed u, w; can be solved by a 2D-shrinkage.
@ For fixed w, quadratic can be minimized by 3 FFTs.

(Wang, Yang, Yin &Z, 2007, 2008) —
@
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FTVd

FTVd is a long-missing member of the half-qudratic class
(Geman-Yang 95), using a 2D Huber-like approximation.

FTVd Convergence

@ Finite convergence for W," — 0 (sparsity helps).
@ Strong g-linear convergence rates for the others
@ Rates depend on submatrices (sparsity helps).
@ Continuation accelerates practical convergence.

FTVd Performance

@ Orders of magnitude faster than Lagged Diffusivity.

@ Comparable speed with Matlab deblurring, with better
quality. TV models has finally caught up in speed.




FTVd vs. Lagged Diffusivity
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FTVd vs. Others

Blurry&Noisy. SNR: 5.19dB ForwaRD: SNR: 12.46dB, t = 4.88s FTVd: B = 25 SNR: 12.58dB, t = 1.83s

FTVd: B = 27, SNR: 13.11dB, t = 14.10s




FTVd Extensions

Multi-channel Image Deblurring (paper forthcoming)
@ cross-channel or within-channel blurring
@ a “small” number of FFTs per iteration
@ convergence results have been generalized
@ TV+L'" deblurring models (codes hard to find)

Other Extensions

@ higher-order TV regularizers (reducing stair-casing)
@ multi-term regularizations — multiple splitthgs

@ locally weighted TV — weighted shrinkage

@ reconstruction from partial Fourier coefficients (MRI)

min TV(u) + ||®ullt + pll Fp(u) — fl

@
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Numerical Results

MRI Construction from 15% Coefficients

Original 250 x 250 Original 250 x 250 Original 250 x 250 Original 250 x 250 Original 250 x 250 Original 250 x 250

SNR:14.74,t=0.09 SNR:16.12,1=0.09 SNR:17.72, 1=0.08

\/




Numerical Results

Color Image Deblurring

Original image: 512x512 Blurry & Noisy SNR: 5.1dB. deconvlucy: SNR=6.5dB, t=8.9

deconvreg: SNR=10.8dB, t=4.4 deconvwnr: SNR=10.8dB, t=1.4 MxNopt: SNR=16.3dB, t=1.6

ey e

Comparison to Matlab Toolbox: 512 x 512 Lena e



Numerical Results

Summary

Take-Home Messages

@ CS recoverability can be proved in 1 page via KGG.

@ Prior information can never degrade CS recoverability,
but may significantly enhance it.

@ 1st-order methods can be fast thanks to solution sparsity
(finite convergence, rates depending on sub-Hessians).

@ TV models can be solved quickly if structures exploited.
@ Continuation is necessary to make algorithms practical.
@ Rice has a long tradition in optim. algorithms/software.

SSAY
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Numerical Results

The End

Software FPC and FTVd available at:

http://www.caam.rice.edu/ optimization/L1

Thank You!
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