Architectures for Compressive Sampling

Justin Romberg

School of Electrical and Computer Engineering

Georgia Institute of Technology

Collaborators: Emmanuel Candès, Joel Tropp, Richard Baraniuk, Marco Duarte, Jason Laska, Paul Voss, Paul Hasler, Ryan Robucci, Ken Chiu

Compressive Sampling Linear Algebra

- ullet High resolution (unknown) n-point signal x_0
- Small number of measurements

$$y_k = \langle x_0, \phi_k
angle, \;\; k = 1, \ldots, m$$
 or $y = \Phi x_0$

 ϕ_{k} = "test function"

ullet Fewer measurements than degrees of freedom, $m \ll n$

$$\begin{bmatrix} y \end{bmatrix} = \begin{bmatrix} & & \Phi & & \end{bmatrix} \begin{bmatrix} x_{\theta} & & & \\ & & & & \end{bmatrix}$$

ullet Compressive Sampling: for sparse x_0 , we can "invert" certain Φ

Sparse Recovery

- Model: signal/image x_0 is sparse in the Ψ domain (example: x_0 is an image, Ψ is a wavelet transform)
- ullet Acquisition: measure $y=\Phi x_0$
- Recovery: solve

$$\min_x \ \| \Psi^T x \|_{\ell_1}$$
 subject to $\Phi x = y$

Finds the sparsest signal which explains the measurements

For which Φ does this "work"?

Sensing Sparse Coefficients

- Signal is local, measurements are global
- When the test functions are just iid random sequences, we can recover perfectly from (CT,D '06)

$$m \gtrsim S \cdot \log n$$
 measurements

• In practice, it seems that

 $m \approx 5S$ measurements are sufficient

Random sensing is a universal acquisition scheme

Representation vs. Measurements

Image structure: *local, coherent* Good basis functions:

Measurements: global, incoherent
 Good test functions:

Problems with Random Measurements

- How do I compute with them?
 - Recovery algorithm will invariably require applying Φ multiple times
- How do I take them physically?

Structured Recovery

- Sparsity basis Ψ (orthonormal)
- Measurement basis M (orthonormal)
- Ω = random subset of sample locations $y = M_\Omega x_0$
- Recover solving

$$\min_x \ \|\Psi^T x\|_{\ell_1}$$
 subject to $\Phi x = y, \qquad \Phi = M_\Omega$

Perfect recovery for

$$|m| \gtrsim |\mu^2 \cdot S \cdot \log n|$$

depends on *coherence* $1 \leq \mu^2 \leq n$ between M and Ψ

Examples of Incoherence

• Signal is sparse in time domain, sampled in Fourier domain

• Signal is sparse in wavelet domain, measured with noiselets (Coifman et. al)

Another way to downsample

Randomly Modulated Summation

- Instead of choosing small set of random samples,
 "Downsample" by changing phases, breaking into chunks, and summing
- Measurement system M with coherence μ
- ullet To form Φ : ${\it divide}$ rows into ${\it m}$ blocks, randomly ${\it flip sign}$ of each row, ${\it sum}$ over block
- ullet S sparse x_0 can be recovered from

$$m \ \gtrsim \ \mu^2 \cdot S \cdot \log^2 n$$

DARPA: "Analog to Information"

- Goal: reconstruct spectrally sparse signals with incredibly high freqs
 ADCs cannot run fast enough for Nyquist
- CS Architecture I: random non-uniform sampling
 Take standard ADC, clock it non-uniformly with "slow" average rate
- CS Architecture II: randomly modulated summation
 Modulate incoming pulse, integrate (high-speed but simple circuit), sample uniformly at slow rate
- Hardware implementation in progress ...

Georgia Tech Analog Imager

- Bottleneck in imager arrays is data readout
- Instead of quantizing pixel values, take noiselet inner products in analog
- ullet Potential for tremendous (factor of $pprox 10^4$) power savings

Universality

- ullet Sampling domain M must be very different than sparsity domain Ψ
- Are there *universal* measurement schemes that are structured for fast computations?
- Yes, but we need to add just a little more randomness...

Random Convolution

- Create a *random* orthonormal system in three easy steps:
 Take FFT, randomly change the phases, Inverse FFT
- Measurement matrix is diagonal in Fourier domain

$$M=\mathcal{F}^*\Sigma\mathcal{F}, \quad \Sigma=\mathrm{diag}(\{\sigma_\omega\}),$$
 each σ_ω has unit magnitude, random phase

then randomly subsample the rows

• Equivalent to *convolving* with a random pulse, then *subsampling in time*

Intuition for Random Convolution

ullet With (extremely) high probability, measurements will be incoherent with a fixed orthosystem Ψ ,

$$\mathcal{F}^*\Sigma\mathcal{F}$$
 looks like noise in the Ψ domain

- Applying M is fast (two FFTs)
- Example: Wavelets

Theory for Random Convolution

- Fix representation Ψ , generate $M = \mathcal{F}^* \Sigma \mathcal{F}$ (random orthobasis)
- Coherence between Ψ and M will be $\mu^2 \sim \log n$ \Rightarrow extra \log factors in the number of samples required
- Refining our notion of coherence slightly eliminates these
- Perfect recovery with random non-uniform sampling from

$$m \, \gtrsim \, S \cdot \log n$$
 samples,

and with randomly modulate summation, from

(R '08)

$$m \, \gtrsim \, S \cdot \log^2 n$$
 samples

Why is random convolution + subsampling universal?

• One entry of *M*:

$$M_{t,s} = \sum_{\omega} e^{j2\pi\omega t} \sigma_{\omega} \hat{\psi}_s(\omega)$$

= $\sum_{\omega} \sigma'_{\omega} \hat{\psi}_s(\omega)$

• Size of each entry will be concentrated around $\|\hat{\psi}_s(\omega)\|_2=1$ does not depend on the "shape" of $\hat{\psi}_s(\omega)$

Compare to Fast Johnson-Lindenstrauss Transform

- Ailon and Chazelle, 2006
- Problem:

```
k points x_1,\ldots,x_k in \mathbb{R}^n, project onto \mathbb{R}^m using \Phi (m 	imes n matrix) Want \|\Phi(x_i-x_j)\|_2 pprox \|x_i-x_j\|_2 for m \sim \log k, and \Phi to be "fast"
```

JL problem is closely related to CS

(Baraniuk et al. '07)

• Their solution: take $\Phi = PHD$

 $D = \operatorname{diag}(\{\epsilon_i\})$ (makes input signs random)

H = Hadamard transform (Fourier on \mathbb{Z}_2)

P=m imes n subsampling matrix, each row has m random entries at random locations

• This Φ would be tremendous, except it is not clear how to implement it by taking O(m) physical measurements (P has m^2 entries in it)

Random Convolution

- Convolving with a random pulse then subsampling is an efficient, universal acquisition strategy
- Structure allows for fast computations Applying $M = \mathcal{F}^* \Sigma \mathcal{F}$ is *fast* (two FFTs)
- Convolution can actually be done physically:
 Two examples:
 - Radar imaging (hi-freq wideband pulse, low-freq sampling)
 - Fourier optics (hi-res diffraction grating, low-res sensor array)

SAR Spotlight Imaging

- Send out pulse p(t), return signal is p(t) convolved with range profile q(t)
- CS ⇒ ADC sampling rate is determined by complexity of range profile, and not the bandwidth of the pulses

(figure from M. Cetin)

Fourier Optics

- Take Fourier transform of input image with a lens
- Apply random amplitude/phase modulation in the Fourier domain with a spatial light modulator (=random convolution in space)
- Inverse Fourier transform with another lens
- Large pixels: average consecutive rows of M
- Problem: averaging destroys incoherence ("low pass filter")
- Solution: randomly modulate the summation

coarse grid measurements

compare to standard:

pixelated image (coarse grid)

recovered image (fine grid)

Summary

- Random measurements:
 - S-sparse recovery from $m \gtrsim S \cdot \log n$ measurements
- Structured measurements:
 - S-sparse recovery from $m \gtrsim \mu^2 \cdot S \cdot \log n$ measurements
- Random convolution:
 - S-sparse recovery from $m \, \gtrsim \, S \cdot \log n$ samples
 - structured yet "incoherent"
 - makes universal, large-scale recovery possible
- Immediately suggests architectures for CS imaging
 - Radar
 - Fourier optics