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Compressive Sampling Linear Algebra

e High resolution (unknown) n-point signal xq

e Small number of measurements
Y = (Tos Pk), k=1,...,m or y = Pxo

¢ = “test function”

e Fewer measurements than degrees of freedom, m < n
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e Compressive Sampling: for sparse xq, we can “invert” certain ®



Sparse Recovery

e Model: signal/image xg is sparse in the ¥ domain
(example: x¢ Is an image, ¥ is a wavelet transform)

e Acquisition: measure y = Pxq

e Recovery: solve
min ||¥Tx||,, subjectto Pxr =1y
£r

Finds the sparsest signal which explains the measurements

e For which ® does this “work”?



Sensing Sparse Coefficients

S-sparse vector iIncoherent measurements

[ A A b A e
AAIA A AWMty o

Mgy yrtosh sy i i
WA S N

Signal is local, measurements are global

When the test functions are just iid random sequences, we can recover
perfectly from (CT,D ’06)

m 2> S-.-logn measurements

In practice, it seems that

m = 55 measurements are sufficient

Random sensing is a universal acquisition scheme
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Representation vs. Measurements

e Image structure: local, coherent
Good basis functions:

e Measurements: global, incoherent
Good test functions:




Problems with Random Measurements

e How do | compute with them?

— Recovery algorithm will invariably require applying & multiple times

e How do | take them physically?



Structured Recovery

Q2
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Sparsity basis ¥  (orthonormal)

Measurement basis M  (orthonormal)

(2 = random subset of sample locations
y = Maxo

Recover solving

min |[|[¥Tx||,, subjectto &z =y, ® = Mg

Perfect recovery for
m > p?-S-.logn
2

depends on coherence 1 < p* < n between M and ¥ (CR’07)



Examples of Incoherence

e Signal is sparse in time domain, sampled in Fourier domain

e Signal is sparse in wavelet domain, measured with noiselets (Coifman et. al)
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Another way to downsample

input signal
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modulate (fast)
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Randomly Modulated Summation
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M
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Instead of choosing small set of random samples,
“Downsample” by changing phases, breaking into chunks, and summing

Measurement system M with coherence u

To form &:

divide rows into m blocks, randomly flip sign of each row, sum over block

S sparse xq can be recovered from

measurements

m > p?-8S-log’n

(TDLRB '08)



DARPA: “Analog to Information”

Goal: reconstruct spectrally sparse signals with incredibly high fregs
ADCs cannot run fast enough for Nyquist

CS Architecture I: random non-uniform sampling
Take standard ADC, clock it non-uniformly with “slow” average rate

CS Architecture II: randomly modulated summation
Modulate incoming pulse, integrate (high-speed but simple circuit), sample
uniformly at slow rate

Hardware implementation in progress ...
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Georgia Tech Analog Imager
e Bottleneck in imager arrays is data readout

e Instead of quantizing pixel values, take noiselet inner products in analog
o Potential for tremendous (factor of ~ 10%) power savings
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Universality

e Sampling domain M must be very different than sparsity domain ¥

e Are there universal measurement schemes that are structured for fast
computations?

e Yes, but we need to add just a little more randomness...



Random Convolution

object to image

random filter

small # of
measurements

e Create a random orthonormal system in three easy steps:
Take FFT, randomly change the phases, Inverse FFT

e Measurement matrix is diagonal in Fourier domain

M = F*3XF, X =diag({o.}),

each o, has unit magnitude, random phase

then randomly subsample the rows

e Equivalent to convolving with a random pulse, then subsampling in time



Intuition for Random Convolution

o With (extremely) high probability, measurements will be incoherent with a
fixed orthosystem W,

F*3XF looks like noise in the ¥ domain
e Applying M is fast (two FFTs)
e Example: Wavelets

local in time local in freq notlocal in M
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Theory for Random Convolution

Fix representation ¥, generate M = F*XF (random orthobasis)

Coherence between ¥ and M will be u? ~ logn
= extra log factors in the number of samples required

Refining our notion of coherence slightly eliminates these

Perfect recovery with random non-uniform sampling from
m 2 S-logn samples,
and with randomly modulate summation, from (R’08)

m > S-log?n samples



Why is random convolution + subsampling universal?

e One entry of M:

Mt,s = Z €j2ﬂ-wt0'w’lﬁ3((4J)

1ﬁ1 (w)

=) ol .(w)

e Size of each entry will be concentrated around ||)s(w)||z = 1

does not depend on the “shape” of 14 (w)
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Compare to Fast Johnson-Lindenstrauss Transform

Ailon and Chazelle, 2006

Problem:
k points x1, ..., xk in R™, project onto R™ using ® (m X m matrix)
Want || ®(z; — x;)||2 = ||zi — x;||2 for m ~ log k, and ® to be “fast”

JL problem is closely related to CS (Baraniuk et al. '07)

Their solution: take ® = PHD
D = diag({e;}) (makes input signs random)
H = Hadamard transform (Fourier on Zs)
P = m X n subsampling matrix,
each row has m random entries at random locations

This ® would be tremendous, except it is not clear how to implement it by
taking O(m) physical measurements
(P has m? entries in it)



Random Convolution

e Convolving with a random pulse then subsampling is an efficient, universal
acquisition strategy

e Structure allows for fast computations
Applying M = F*XF is fast (two FFTs)

e Convolution can actually be done physically:
Two examples:
- Radar imaging (hi-freq wideband pulse, low-freq sampling)

— Fourier optics (hi-res diffraction grating, low-res sensor array)



SAR Spotlight Imaging

q(u)

Reflectivity Field f

R

e Send out pulse p(t), return signal is p(t) convolved with range profile g(t)

e CS = ADC sampling rate is determined by complexity of range profile,
and not the bandwidth of the pulses

(figure from M. Cetin)



Fourier Optics

Take Fourier transform of input image with a lens

Apply random amplitude/phase modulation in the Fourier domain with a
spatial light modulator (=random convolution in space)

Inverse Fourier transform with another lens
Large pixels: average consecutive rows of M
Problem: averaging destroys incoherence (“low pass filter”)

Solution: randomly modulate the summation
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modulate in space
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coarse CCD array coarse grid
(integrate over big squares) measurements



coarse grid
measurements

compare to standard: l

]

pixelated image recovered image

(coarse grid) (fine grid)




Random measurements:
S-sparse recovery from m

Structured measurements:
S-sparse recovery from m

Random convolution:
S-sparse recovery from m

Summary
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— structured yet “incoherent”

S - log n measurements

n? - S - log n measurements

S - log n samples

— makes universal, large-scale recovery possible

Immediately suggests architectures for CS imaging

— Radar

— Fourier optics



