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Compressive Sampling Linear Algebra

• High resolution (unknown) n-point signal x0

• Small number of measurements

yk = 〈x0, φk〉, k = 1, . . . ,m or y = Φx0

φk = “test function”

• Fewer measurements than degrees of freedom, m � n

y ! x0=

• Compressive Sampling: for sparse x0, we can “invert” certain Φ



Sparse Recovery

• Model: signal/image x0 is sparse in the Ψ domain
(example: x0 is an image, Ψ is a wavelet transform)

• Acquisition: measure y = Φx0

• Recovery: solve

min
x

‖ΨTx‖`1 subject to Φx = y

Finds the sparsest signal which explains the measurements

• For which Φ does this “work”?



Sensing Sparse Coefficients
S-sparse vector incoherent measurements

• Signal is local, measurements are global

• When the test functions are just iid random sequences, we can recover
perfectly from (CT,D ’06)

m & S · logn measurements

• In practice, it seems that

m ≈ 5S measurements are sufficient

• Random sensing is a universal acquisition scheme



y1 = 〈
,

〉

y2 = 〈
,

〉

y3 = 〈
,

〉
...

ym = 〈
,

〉



Representation vs. Measurements
• Image structure: local, coherent

Good basis functions:
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• Measurements: global, incoherent
Good test functions:



Problems with Random Measurements

• How do I compute with them?

– Recovery algorithm will invariably require applying Φ multiple times

• How do I take them physically?



Structured Recovery
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• Sparsity basis Ψ (orthonormal)

• Measurement basis M (orthonormal)

• Ω = random subset of sample locations
y = MΩx0

• Recover solving

min
x

‖ΨTx‖`1 subject to Φx = y, Φ = MΩ

• Perfect recovery for
m & µ2 · S · logn

depends on coherence 1 ≤ µ2 ≤ n between M and Ψ (CR ’07)



Examples of Incoherence
• Signal is sparse in time domain, sampled in Fourier domain

Time domain x(t) Frequency domain x̂(ω)

S nonzero components Measure m samples

• Signal is sparse in wavelet domain, measured with noiselets (Coifman et. al)

example noiselet wavelet domain noiselet domain



Another way to downsample
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Randomly Modulated Summation
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• Instead of choosing small set of random samples,
“Downsample” by changing phases, breaking into chunks, and summing

• Measurement system M with coherence µ

• To form Φ:
divide rows into m blocks, randomly flip sign of each row, sum over block

• S sparse x0 can be recovered from

m & µ2 · S · log2 n

measurements (TDLRB ’08)



DARPA: “Analog to Information”

• Goal: reconstruct spectrally sparse signals with incredibly high freqs
ADCs cannot run fast enough for Nyquist

• CS Architecture I: random non-uniform sampling
Take standard ADC, clock it non-uniformly with “slow” average rate

• CS Architecture II: randomly modulated summation
Modulate incoming pulse, integrate (high-speed but simple circuit), sample
uniformly at slow rate

• Hardware implementation in progress ...
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Figure 2.5-1.  Nonuniform Sampling Testbed Simplified Block Diagram 
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Figure 2.5-2.  Nonuniform Sampling Testbed 
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Figure 2.5-3.  Digital Pattern Generator Nonuniform Clock Generation 
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Georgia Tech Analog Imager

• Bottleneck in imager arrays is data readout

• Instead of quantizing pixel values, take noiselet inner products in analog

• Potential for tremendous (factor of ≈ 104) power savings
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Universality

• Sampling domain M must be very different than sparsity domain Ψ

• Are there universal measurement schemes that are structured for fast
computations?

• Yes, but we need to add just a little more randomness...



Random Convolution

random filter

object to image

downsample

small # of 

measurements

• Create a random orthonormal system in three easy steps:
Take FFT, randomly change the phases, Inverse FFT

• Measurement matrix is diagonal in Fourier domain

M = F∗ΣF , Σ = diag({σω}),

each σω has unit magnitude, random phase

then randomly subsample the rows

• Equivalent to convolving with a random pulse, then subsampling in time



Intuition for Random Convolution

• With (extremely) high probability, measurements will be incoherent with a
fixed orthosystem Ψ,

F∗ΣF looks like noise in the Ψ domain

• Applying M is fast (two FFTs)

• Example: Wavelets

local in time local in freq not local in M

sample here



Theory for Random Convolution

• Fix representation Ψ, generate M = F∗ΣF (random orthobasis)

• Coherence between Ψ and M will be µ2 ∼ logn
⇒ extra log factors in the number of samples required

• Refining our notion of coherence slightly eliminates these

• Perfect recovery with random non-uniform sampling from

m & S · logn samples,

and with randomly modulate summation, from (R ’08)

m & S · log2 n samples



Why is random convolution + subsampling universal?


F




σ1

σ2

. . .

σn




ψ̂1(ω) ψ̂2(ω) · · · ψ̂n(ω)


• One entry of M :

Mt,s =
∑
ω

ej2πωtσωψ̂s(ω)

=
∑
ω

σ′
ωψ̂s(ω)

• Size of each entry will be concentrated around ‖ψ̂s(ω)‖2 = 1
does not depend on the “shape” of ψ̂s(ω)



Compare to Fast Johnson-Lindenstrauss Transform

• Ailon and Chazelle, 2006

• Problem:
k points x1, . . . , xk in Rn, project onto Rm using Φ (m× n matrix)
Want ‖Φ(xi − xj)‖2 ≈ ‖xi − xj‖2 for m ∼ log k, and Φ to be “fast”

• JL problem is closely related to CS (Baraniuk et al. ’07)

• Their solution: take Φ = PHD

D = diag({εi}) (makes input signs random)
H = Hadamard transform (Fourier on Z2)
P = m× n subsampling matrix,

each row has m random entries at random locations

• This Φ would be tremendous, except it is not clear how to implement it by
taking O(m) physical measurements
(P has m2 entries in it)



Random Convolution

• Convolving with a random pulse then subsampling is an efficient, universal
acquisition strategy

• Structure allows for fast computations
Applying M = F∗ΣF is fast (two FFTs)

• Convolution can actually be done physically:
Two examples:

– Radar imaging (hi-freq wideband pulse, low-freq sampling)

– Fourier optics (hi-res diffraction grating, low-res sensor array)



SAR Spotlight Imaging
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Figure 2.1: Ground-plane geometry for data collection in spotlight-mode SAR.

a more limited area than stripmap-mode SAR, because by steering the antenna, the

same terrain portion can be observed through a wider range of angles as compared

to that in stripmap-mode SAR.

The geometry for data collection in a spotlight-mode SAR is shown in Figure 2.1.

The x − y coordinate system (denoting range and azimuth coordinates respectively)

is centered on a relatively small patch of ground illuminated by a narrow RF beam

from the moving radar. As the radar traverses the flight path, the radar beam is

continuously pointed in the direction of the ground patch. At points corresponding

to equal increments of θ (the angle between the x-axis and u-axis in Figure 2.1),

high-bandwidth pulses (such as linear FM) are transmitted to the ground patch and

echoes are then received and processed.

As we will illustrate in the following sections, demodulated SAR returns at each

observation point (after some pre-processing and certain approximations) are related

to a particular projectional view of the underlying scene, and the full set of returns

provide a band-limited spatial frequency domain description of the scene.

13

• Send out pulse p(t), return signal is p(t) convolved with range profile q(t)

• CS ⇒ ADC sampling rate is determined by complexity of range profile,
and not the bandwidth of the pulses

(figure from M. Cetin)



Fourier Optics

• Take Fourier transform of input image with a lens

• Apply random amplitude/phase modulation in the Fourier domain with a
spatial light modulator (=random convolution in space)

• Inverse Fourier transform with another lens

• Large pixels: average consecutive rows of M

• Problem: averaging destroys incoherence (“low pass filter”)

• Solution: randomly modulate the summation
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coarse grid 
measurements
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Summary

• Random measurements:
S-sparse recovery from m & S · logn measurements

• Structured measurements:
S-sparse recovery from m & µ2 · S · logn measurements

• Random convolution:
S-sparse recovery from m & S · logn samples

– structured yet “incoherent”

– makes universal, large-scale recovery possible

• Immediately suggests architectures for CS imaging

– Radar

– Fourier optics


