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◮ Seek sparsest solution, ‖x‖ℓ0 := # nonzero elements
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◮ Efficient, non-combinatorial, solution via convex ℓ1 relaxation
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◮ How sparse is necessary such that ℓ1 recovers ℓ0?
◮ Matrix family A: Gaussian iid entries, random ortho-projector

[Baryshnikov and Vitale]

David L. Donoho & Jared Tanner Phase Transition Phenomenon in Sparse Approximation



The Geometry of l1 Regularization
Phase transition phenomenon

Universality Conjecture

Convex polytopes
Counting faces

Sparse Representations via ℓ
1 Regularization

◮ Underdetermined system, infinite number of solutions

Ax = b, A ∈ R
n×N , n < N

◮ Seek sparsest solution, ‖x‖ℓ0 := # nonzero elements

min ‖x‖ℓ0 subject to Ax = b

◮ Efficient, non-combinatorial, solution via convex ℓ1 relaxation

min ‖x‖ℓ1 subject to Ax = b

◮ How sparse is necessary such that ℓ1 recovers ℓ0?
◮ Matrix family A: Gaussian iid entries, random ortho-projector

[Baryshnikov and Vitale]
◮ Gaussian ensemble: Comp. Sens. without prior basis selection

min ‖Φx‖ℓ1 subject to ‖AΦx − b‖ ≤ ǫ
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Geometry of ℓ
1 recovering ℓ

0

◮ Sparsity: x ∈ R
N with k < n nonzeros on k − 1 face of ℓ1 ball.

◮ Matrix A projects face of ℓ1 ball either onto or into conv(A).

ℓ1 ball ∈ R
N edge onto conv(A) edge into conv(A)
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Geometry of ℓ
1 recovering ℓ

0

◮ Sparsity: x ∈ R
N with k < n nonzeros on k − 1 face of ℓ1 ball.

◮ Matrix A projects face of ℓ1 ball either onto or into conv(A).

ℓ1 ball ∈ R
N edge onto conv(A) edge into conv(A)

◮ Survived faces are sparsity patterns in x where ℓ1 → ℓ0

◮ Faces which fall inside conv(A) are not solutions to ℓ1
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0

◮ min ‖x‖1 subject to Ax = b, A ∈ R
n×N

Grow conv(αA) from α = 0 until intersects b ∈ R
n
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Geometry of ℓ
1 recovering ℓ

0

◮ min ‖x‖1 subject to Ax = b, A ∈ R
n×N

Grow conv(αA) from α = 0 until intersects b ∈ R
n

ℓ1 → ℓ0 ℓ1 9 ℓ0
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Expected number of faces, random ortho-projector
fk(Q) − Efk(AQ) = 2

∑

s≥0

∑

F∈Fk (Q)

∑

G∈Fn+1+2s(Q)

β(F ,G )γ(G ,Q)

where β and γ are internal and external angles respectively
[Affentranger, Schneider]
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Expected number of faces, random ortho-projector
fk(Q) − Efk(AQ) = 2

∑

s≥0

∑

F∈Fk (Q)

∑

G∈Fn+1+2s(Q)

β(F ,G )γ(G ,Q)

where β and γ are internal and external angles respectively
[Affentranger, Schneider]

γ(F ℓ,TN−1) =

√

ℓ+ 1

π

∫ ∞

0
e−(ℓ+1)x2

(

2√
π

∫ x

0
e−y2

dy

)N−ℓ−1

dx .

◮ Large deviation analysis, Q = TN−1,CN : exponential behavior in N
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Counting Faces of Random Polytopes: Strong

Strong recovery phase transition, ρS(δ):

◮ With overwhelming probability on the selection of A,
ℓ1 recovers ℓ0 for every x0 with ‖x0‖ℓ0 ≤ ⌊(ρS (δ) − ǫ) · n⌋

• For ℓ ≤ ⌊(ρS (δ) − ǫ) · n⌋, fℓ(C
N) − Efℓ(An,NCN) ≤ πNe−ǫ̃N

Prob{fℓ(ACN) = fℓ(C
N), ℓ ≤ ⌊(ρS (δ) − ǫ)n⌋} → 1, as N → ∞.
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Exponentiality of phase transition

◮ Lower and upper bounds on the expected number faces lost

fℓ(C
N) − Efℓ(An,NCN) < (N + 3)5eN·ψ(k/n,n/N)

fℓ(C
N) − Efℓ(An,NCN) > N−3/2eN·ψ(k/n,n/N)
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Exponentiality of phase transition

◮ Lower and upper bounds on the expected number faces lost

fℓ(C
N) − Efℓ(An,NCN) < (N + 3)5eN·ψ(k/n,n/N)

fℓ(C
N) − Efℓ(An,NCN) > N−3/2eN·ψ(k/n,n/N)

ψ(k/n, n/N)
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◮ ρS(k/n) is the zero level curve: ψ(k/n, ρS (k/n)) = 0.
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◮ For k ≤ n · (1 − θ)ρ⋆S(n/N),

fk(Q) − Efk(AQ) < (N + 3)5e−nθΩ⋆

S
(n/N)

with Q = CN ,TN−1 for ⋆ = ±,+.
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◮ Ω⋆
S(n/N) ≥ 1/2.
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◮ For k ≤ n · (1 − θ)ρ⋆S(n/N),

fk(Q) − Efk(AQ) < (N + 3)5e−nθΩ⋆

S
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◮ Ω⋆
S(n/N) ≥ 1/2.

◮ Level curves converge to ρ⋆S as n−1.
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Phase transition for small N : Strong
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◮ Left: Q = TN−1, Right: Q = CN .

◮ P{fk(AQ) = fk(Q)} > 0: k−neighborliness existence

◮ N = 200, 1000, 5000, and N → ∞

David L. Donoho & Jared Tanner Phase Transition Phenomenon in Sparse Approximation



The Geometry of l1 Regularization
Phase transition phenomenon

Universality Conjecture

Exponentiality
Finite dimensional bounds
Weak phase transitions

Phase transition for small N : Strong

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

n/N

k
n

◮ Left: Q = TN−1, Right: Q = CN .

◮ P{fk(AQ) = fk(Q)} > 0: k−neighborliness existence

◮ N = 200, 1000, 5000, and N → ∞
◮ How do the phase transitions change when requiring only

successful recovery of the k−sparse vector most of the time?

David L. Donoho & Jared Tanner Phase Transition Phenomenon in Sparse Approximation



The Geometry of l1 Regularization
Phase transition phenomenon

Universality Conjecture

Exponentiality
Finite dimensional bounds
Weak phase transitions

Counting Faces of Random Polytopes: Weak

Weak recovery phase transition, ρW (δ):
• For ℓ ≤ ⌊(ρW (δ) − ǫ) · n⌋, Efℓ(ACN) ≥ (1 − ǫ̃)fℓ(C

N),

◮ With overwhelming probability on the selection of A,
ℓ1 recovers ℓ0 for most x0 with ‖x0‖ℓ0 ≤ ⌊(ρW (δ) − ǫ) · n⌋
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Strong (all x) and Weak (most x) transition
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Exponentiality of phase transition, weak

◮ For k ≤ n · (1 − θ)ρ⋆W (n/N),

fk(Q) − Efk(AQ)

fk(Q)
< (N + 3)6e−nθ2Ω⋆

W
(n/N)

with Q = CN ,TN−1 for ⋆ = ±,+.
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Exponentiality of phase transition, weak

◮ For k ≤ n · (1 − θ)ρ⋆W (n/N),

fk(Q) − Efk(AQ)

fk(Q)
< (N + 3)6e−nθ2Ω⋆

W
(n/N)

with Q = CN ,TN−1 for ⋆ = ±,+.
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◮ Ω⋆
W (n/N) ≥ 1/4.

◮ Level curves converge to ρ⋆W as n−1/2.
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Phase transition for small N : Weak
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◮ Left: Efk(ACN) ≥ 99
100 fk(CN): 99% face survive

N = 200, 1000, 5000, and N → ∞
◮ For k ≤ n · (1 − θ)ρW (n/N),

Efk(ACN)/fk(CN) > 1 − (N + 2)6e−nθ2/4
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◮ Left: Efk(ACN) ≥ 99
100 fk(CN): 99% face survive

N = 200, 1000, 5000, and N → ∞
◮ For k ≤ n · (1 − θ)ρW (n/N),

Efk(ACN)/fk(CN) > 1 − (N + 2)6e−nθ2/4

◮ Good empirical agreement for N = 200.

◮ Right: Phase transitions also known for x ≥ 0

◮ What happens in the asymptotic regime n ≪ N?
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The Compressed Sensing Regime: n ≪ N

◮ Sub-exponential growth of n with respect to Nn,

δ := n/Nn → 0,
log(Nn)

n
→ 0, Nn → ∞.
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The Compressed Sensing Regime: n ≪ N

◮ Sub-exponential growth of n with respect to Nn,

δ := n/Nn → 0,
log(Nn)

n
→ 0, Nn → ∞.

◮ Strong Threshold, Nonnegative
ρ+
S (δ) ∼ |2e log(δ2

√
π)|−1, δ → 0

Strong Threshold, Signed
ρ±S (δ) ∼ |2e log(δ

√
π)|−1, δ → 0

Weak Thresholds
ρW (δ) ∼ |2 log(δ)|−1, δ → 0
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The Compressed Sensing Regime: n ≪ N

◮ Sub-exponential growth of n with respect to Nn,

δ := n/Nn → 0,
log(Nn)

n
→ 0, Nn → ∞.

◮ Strong Threshold, Nonnegative
ρ+
S (δ) ∼ |2e log(δ2

√
π)|−1, δ → 0

Strong Threshold, Signed
ρ±S (δ) ∼ |2e log(δ

√
π)|−1, δ → 0

Weak Thresholds
ρW (δ) ∼ |2 log(δ)|−1, δ → 0

◮ Principle Difference:
e-times less strict sparsity requirement for recover
of most threshold compared with for all threshold

◮ Gaussian setting fully characterized for ℓ1 without noise
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The Compressed Sensing Regime: n ≪ N

◮ Sub-exponential growth of n with respect to Nn,

δ := n/Nn → 0,
log(Nn)

n
→ 0, Nn → ∞.

◮ Strong Threshold, Nonnegative
ρ+
S (δ) ∼ |2e log(δ2

√
π)|−1, δ → 0

Strong Threshold, Signed
ρ±S (δ) ∼ |2e log(δ

√
π)|−1, δ → 0

Weak Thresholds
ρW (δ) ∼ |2 log(δ)|−1, δ → 0

◮ Principle Difference:
e-times less strict sparsity requirement for recover
of most threshold compared with for all threshold

◮ Gaussian setting fully characterized for ℓ1 without noise
◮ Empirical evidence indicates a notion of universality for ℓ1
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Universality result: non-negativity
Comparisons

Weak Phase Transitions: Universality Conjecture

◮ Black: Weak phase transition: x ≥ 0 (top) x , signed (bot.)

◮ Overlaid empirical evidence of 50% success rate for
Gaussian, Uniform 0 & 1, and Fourier
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Universality result: non-negativity
Comparisons

Towards Universality: Sign Constraints - Not ℓ
1

◮ Let x ≥ 0 be k-sparse and form b = Ax .

◮ Are there other y ∈ R
N such that Ay = b, y ≥ 0, y 6= x?
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Comparisons

Towards Universality: Sign Constraints - Not ℓ
1

◮ Let x ≥ 0 be k-sparse and form b = Ax .

◮ Are there other y ∈ R
N such that Ay = b, y ≥ 0, y 6= x?

◮ As n,N → ∞, Typically No provided k/n < ρH
W (δ)
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Towards Universality: Sign Constraints - Not ℓ
1

◮ Let x ≥ 0 be k-sparse and form b = Ax .
◮ Are there other y ∈ R

N such that Ay = b, y ≥ 0, y 6= x?
◮ As n,N → ∞, Typically No provided k/n < ρH

W (δ)
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◮ Universal: A an ortho-complement of B ∈ R
N−n×N with

entries selected i.i.d. from a symmetric distribution
◮ For k/n < ρH

W (δ) and x ≥ 0, use any method you like, the
answer is unique.
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Towards Universality: Sign Constraints - Not ℓ
1

◮ Let x ≥ 0 be k-sparse and form b = Ax .
◮ Are there other y ∈ R

N such that Ay = b, y ≥ 0, y 6= x?
◮ As n,N → ∞, Typically No provided k/n < ρH

W (δ)
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◮ Universal: A an ortho-complement of B ∈ R
N−n×N with

entries selected i.i.d. from a symmetric distribution
◮ Good empirical agreement for N = 200.
◮ Overlaid empirical evidence of 50% success rate for

Gaussian, Uniform 0,-1,+1, and Sparse 0,-1,+1
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Universality result: non-negativity
Comparisons

Comparisons with other work

◮ Don’t we already have universality, the RIP

(1 − δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk)‖x‖2
2

◮ RIP ℓ1 → ℓ0 condition, δ2k <
√

2 − 1
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Strong (all x), RIP transition

◮ RIP: robustness, pessimistic, “hard to check”, not necessary
◮ Polytope: no robustness (yet), iff results, “hard to check”
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Comparisons with other work

◮ Don’t we already have universality, the RIP

(1 − δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk)‖x‖2
2

◮ RIP ℓ1 → ℓ0 condition, δ2k <
√

2 − 1
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0.1

0.2

0.3
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0.8

0.9

n/N

k
n

Strong (all x), Weak, RIP transition

◮ RIP: robustness, pessimistic, “hard to check”, not necessary
◮ Polytope: no robustness (yet), iff results, “hard to check”
◮ Coherence: highly pessimistic, “easy to check”, not necessary

Phase portrait implied by coherence? k/n < Const/ log(n)
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