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motivation

lll-posed transport equations Visc solutions
Why scosity solutions?

The theory
Numerics

Motivation

@ Advection dominated problem:
u+B-Vu—eViu=rf; ulpa =0

@ Approximation on coarse mesh |||/ <h > €.
@ Standard discretization = Spurious oscillations
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lll-posed transport equations s
sity solutions?

Numerics

Galerkin/Finite Elements

Mesh Galerkin P,

dyu — 0.002V?u = 0,

u(0,y)=0, u(l,y)=1,
dyu(x,0) =0, Oyu(x,1)=0.
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lll-posed transport equations Viscosity solutions
Why L' for viscosity solutions?
The theory
Numerics

Viscosity solutions of PDE's

In Q € RY consider:
au+V-f(u)=g; ulsq = wo.

[ll-posed in standard sense, but notion of viscosity solution applies
(Bardos, Leroux, and Nédélec (1979), Kruzkov ...)
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lll-posed transport equations Viscosity solutions
Why L' for viscosity solutions?
The theory
Numerics

Viscosity solutions of PDE's

@ The viscosity solution can be interpreted as the limit._o of

au+V-f(u) —eViu=g; uloa = up.
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motivation
lll-posed transport equations Viscosity solutions
Why L' for viscosity solutions?
The theory
Numerics

Viscosity solutions of PDE's

@ The viscosity solution can be interpreted as the limit._o of

au+V-f(u) —eViu=g; uloa = up.

@ One tries to solve the ill-posed pb when e < ||f’|| 1~ h.
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motivation
lll-posed transport equations Viscosity solutions
Why L' for viscosity solutions?
The theory
Numerics

Viscosity solutions of PDE's

@ The viscosity solution can be interpreted as the limit._o of

au+V-f(u) —eViu=g; uloa = up.

@ One tries to solve the ill-posed pb when e < ||f’|| 1~ h.

A good scheme should be able to
approximate the viscosity solution!
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lll-posed transport equations

Why L* for viscosity solutions?
The theory
Numerics

Why L' for viscosity solutions?

@ Let wuyjsc be viscosity solution of
Wisc + V\iisc = fv in (Oa 1)7 Vvisc(O) = 07 Vvisc(]-) =0.
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motivation

lll-posed transport equations iscosity solutions
Why L* for viscosity solutions?
The theory

Numerics

Why L' for viscosity solutions?

@ Let wuyjsc be viscosity solution of
Wisc + V\iisc = fv in (Oa 1)7 Vvisc(O) = 07 Vvisc(]-) =0.

o Let f be the zero extension of f on (—o0, +00).
Let & solve v + v/ = f — wisc(1)0(1), in (—o0, +00), and
v(—o00) =0, v(+o00)=0.
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motivation

lll-posed transport equations Viscosity solutions
Why LY for viscosity solutions?
The theory

Numerics

Why L' for viscosity solutions?

@ Let wuyjsc be viscosity solution of
Wisc + V\iisc = fv in (Oa 1)7 Vvisc(O) = 07 Vvisc(]-) =0.

o Let f be the zero extension of f on (—oo, +00).

Let @i solve v + v/ = f — uiec(1)5(1), in (—o0,400), and
v(—o00) =0, v(+o00)=0.

Byj0,1) = Uvisc-

Dobrev/Guermond/Popov APPROXIMATING PDE's IN L!



lll-posed transport equations

viscosity solutions?
The theory
Numerics

Why L' for viscosity solutions?

@ Let wuyjsc be viscosity solution of
Wisc + Ve =, in (0,1), wisc(0) =0, wisc(1) =0.

visc

o Let f be the zero extension of f on (—o0, +00).
Let & solve v + v/ = f — wisc(1)0(1), in (—o0, +00), and
v(—o00) =0, v(+o00)=0.

Byj0,1) = Uvisc-

i1 solves well-posed pb with RHS bounded measure (~ L1(R))
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lll-posed transport equations
Why L for viscosity solutions?
The theory

Numerics

Viscosity solutions: Theory

@ Consider the 1D pb:

u+p(x)v = fin (0,1), w(0)=0, u(l)=0.
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lll-posed transport equations i ions
Nhy L= for viscosity solutions?
The theory

Numerics

Viscosity solutions: Theory

@ Consider the 1D pb:

u+p(x)v = fin (0,1), w(0)=0, u(l)=0.

@ Assume 0 < inf3, sup# <1 and f € L1,
@ Use piecewise linear polynomials.

@ Use midpoint rule to approximate the integrals.
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motivation

lll-posed transport equations Viscosity solutions
Why L for viscosity solutions?
The theory

Numerics

Viscosity solutions: Theory

@ Consider the 1D pb:

u+p(x)v = fin (0,1), w(0)=0, u(l)=0.

@ Assume 0 < inf3, sup# <1 and f € L1,
@ Use piecewise linear polynomials.

@ Use midpoint rule to approximate the integrals.

Theorem (Guermond-Popov (2007))

The best L*-approximation converges in W,(lj’cl([O, 1)) to the
viscosity solution, and the boundary layer is always located in the
last mesh cell.
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lll-posed transport equations s
ity solutions?

[ll-posed transport in 2D

@ P; elements + preconditioned interior point method.

u+8xu+\/§8yu: 1
ulpa = 0.
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Theory
Steady Hamilton Jacobi equations in L1(R)
Numerical tests

Outline

© Steady Hamilton Jacobi equations in L}(Q)
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Theory
Steady Hamilton Jacobi equations in L1(R) Discretization
Numerical tests

Theory

Let Q be a smooth domain in R2.

°
o Consider

H(x,u,Vu) =0, ulspq= .
e His convex (||¢]| < c(1+ |H(x, v,&)|+|v])).
@ H is Lipschitz.
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Theory
Steady Hamilton Jacobi equations in L1(R) Discretization
Numerical tests

Theory

@ Assume that €, f and « are smooth enough for a viscosity
solution to exist u € W1>(Q), Vu € BV(Q) and u
p-semi-concave.

Definition

v is p-semi-concave if there is a concave function v, € W1 and
a function w € W?P so that v = v, + w.
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Theory
Steady Hamilton Jacobi equations in L1(R) Discretization
Numerical tests

Discretization

@ {7h}h>0o regular mesh family.

o X, ={w € Co(Q); vp|K € Py, VK € Tpy, vihloa = an}.
@ Take p > 2 (p > 1 in one space dimension).

@ Define

In(vh) = [1HC, v Ty + 22 5 /F (ARG
FeF]
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Theory
Steady Hamilton Jacobi equations in L1(R) Discretization
Numerical tests

Discretization

@ {7h}h>0o regular mesh family.

o X, ={w € Co(Q); vp|K € Py, VK € Tpy, vihloa = an}.
@ Take p > 2 (p > 1 in one space dimension).

@ Define

In(vh) = [1HC, v Ty + 22 5 /F (ARG
FeF]

Compute up, € X" s.t.,  J(up) = min  Jp(vp).
VhEX:h
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Theory
Steady Hamilton Jacobi equations in L1(R) Discretization
Numerical tests

Discretization: convergence

Theorem (Guermond-Popov (2008) 1D, and (200?) 2D)

up, converges to the viscosity solution strongly in W1(Q) (the
result holds for arbitrary polynomial degree provided an additional
volume entropy is added)
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Theory
Steady Hamilton Jacobi equations in L1(R) Discretization

Numerical tests

Discretization: algorithms 1D

@ Optimal complexity algorithm developed in
Guermond-Marpeau-Popov (2008).
Algorithm — @y,

Theorem (Guermond-Popov (2007) 1D)

i, converges to the viscosity solution strongly in W1(Q) and
complexity of the algorithm is O(1/h).
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Theory
Steady Hamilton Jacobi equations in L1(R) Discretization

Numerical tests

Discretization: algorithms 1D

@ Optimal complexity algorithm developed in
Guermond-Marpeau-Popov (2008).
Algorithm — @y,

Theorem (Guermond-Popov (2007) 1D)

i, converges to the viscosity solution strongly in W1(Q) and
complexity of the algorithm is O(1/h).

@ The algorithm is similar to the fast marching and fast
sweeping methods (instead of choosing maximal solution,
choose the entropy-minimizing solution).
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Steady Hamilton Jacobi equations in L1(R) Discretization
Numerical tests

1D convergence tests

0 Q=1[0,1], u+i(v)?=F(x), u(0)=u(l)=-1.

™
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Theory
Steady Hamilton Jacobi equations in L1(R) Discretization
Numerical tests

1D convergence tests

0 Q=1[0,1], u+i(v)?=F(x), u(0)=u(l)=-1.

™

o Data: f(x) = —|cos(mx)| + sin?(7x),
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Theory
Steady Hamilton Jacobi equations in L1(R) Discretization
Numerical tests

1D convergence tests

e Q=10,1], u+i(V)>=F(x), u(0)=u(l)=-L1

o Data: f(x) = —|cos(mx)| + sin?(7x),

e Exact solution: u(x) = —|cos(mx)|.
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Steady Hamilton Jacobi equations in L1(R) Discretization

Numerical tests

1D convergence tests

0 1 0 1

e Odd # points (9,19, 39) Even # points (10, 20, 40)
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Theory
Steady Hamilton Jacobi equations in L1(R) Discretization
Numerical tests

1D convergence tests

0Odd # of points

BW11-error, order 1

*Max-error, order 1
Li-error, order 2

10 E 10%
Even # of points
SW11-error, order 1
* Max-error, order 2
Li-error, order 2
10°. T T 10°. T
0001 0.01 0.1 0.001 0.01 o

@ Odd # points Even # points
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Steady Hamilton Jacobi equations in L1(R) Discretization
Numerical tests

1D convergence tests

° (u/)2 +3u+ %X2 — |x] =0, in (—0.95,0.95)
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Theory
Steady Hamilton Jacobi equations in L1(R) Discretization
Numerical tests

1D convergence tests

° (u/)2 +3u+ %X2 — |x] =0, in (—0.95,0.95)

@ Boundary condition set so that the viscosity solution uyisc is
3 .
Wisc(x) = —3x% + 3|x|2, i.e. u(£0.95) = uyisc(+0.95)
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Theory
Steady Hamilton Jacobi equations in L1(R) Discretization
Numerical tests

1D convergence tests

° (u/)2 +3u+ %X2 — |x] =0, in (—0.95,0.95)

@ Boundary condition set so that the viscosity solution uyisc is
3 .
Wisc(x) = —3x% + 3|x|2, i.e. u(£0.95) = uyisc(+0.95)

o Uyisc is in WL(Q) N W2P(Q) for any p € [1,2)
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Theory
Steady Hamilton Jacobi equations in L1(R) Discretization
Numerical tests

1D convergence tests

° (u/)2 +3u+ %X2 — |x] =0, in (—0.95,0.95)

Boundary condition set so that the viscosity solution wyisc is
3 .
Wisc(x) = —3x% + 3|x|2, i.e. u(£0.95) = uyisc(+0.95)

Uyise is in WH(Q) N W?2P(Q) for any p € [1,2)

Uyisc is p-semi-concave for any p € [1,2)
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Steady Hamilton Jacobi equations in L1(R) iscretization
Numerical tests

1D convergence tests

0 . Y . 110° T
-0.95 0 0.9 0.0001 0.001 0.01 0.1
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Steady Hamilton Jacobi equations in L1(R) Discretization
Numerical tests

Eikonal equation 2D

° Q=[0,1P |[Vu|=1, ulog=0.
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Theory
Steady Hamilton Jacobi equations in L1(R) Discretization
Numerical tests

Eikonal equation 2D

° Q=[0,1P |[Vu|=1, ulog=0.

e Exact solution: u(x) = dist(x, 09)
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Steady Hamilton Jacobi equations in L1(R)

Numerical tests

Eikonal equation 2D: Py finite elements

[ N XA\
NS
)M\/\

s tK
ﬁ
N

VA X [ S—XK |

° iso-lines
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Steady Hamilton Jacobi equations in L1(R)

Numerical tests

Eikonal equation 2D: Py finite elements

\

wvm \\‘
p %%’A" AN {“\\“
,"vv u‘ﬁ‘é‘%v\‘\“‘

A’ w IIAA‘AA “\\‘ \
“
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G vmm R

Figure: Pentagon: Aligned unstructured
unstructured mesh (right).

APPROXIMATING PDE's IN L!




Theory
Steady Hamilton Jacobi equations in L1(R) Discretization
Numerical tests

Eikonal equation 2D: Py finite elements

1 1
1 Y T T 1 T T

-1 0 1 -1 0 1

Figure: L-shaped domain: Unstructured mesh (left); Iso-lines of
approximate minimizer (right).
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Steady Hamilton Jacobi equations in L1(R) a
Numerical tests

Algorithms in 2D

e Computation done using Newton-regularization (similar
flavor to interior point).
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Steady Hamilton Jacobi equations in L1(R) Discretization
Numerical tests

Algorithms in 2D

e Computation done using Newton-regularization (similar
flavor to interior point).

Fast sweeping/marching techniques produce L' almost minimizers.
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Motivation: LY splines
C0 Finit

. y Implenr
Terrain data reconstruction F

Outline

© Terrain data reconstruction
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Motivation: s splines
20 ment approach

ion details
Terrain data reconstruction

L! splines (J. Lavery et al. ARO and NCSU)

Problem: Given a set of data in RY, (d = 1,2), construct a spline
approximation

'From J. Lavery, Computer Aided Geometric Design, 23 (2006) 276:296
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Motivation: s splines
20 ment approach
ion details

Terrain data reconstruction

Problem: Given a set of data in RY, (d = 1,2), construct a spline
approximation
Solution: Minimize the LP-norm of second derivative.

'From J. Lavery, Computer Aided Geometric Design, 23 (2006) 276:296
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Motivation: L splines
-0 -

Terrain data reconstruction

Problem: Given a set of data in RY, (d = 1,2), construct a spline
approximation
Solution: Minimize the LP-norm of second derivative.

|
25 ‘fﬁ\j[x ‘ 25
| P |
b“x ! ‘ 24
J\ |
i 1
\ ’M \ 15
|
: i ‘
Cubic L! spline Cubic L2 spline (Least-Squares) \"‘R\‘

'From J. Lavery, Computer Aided Geometric Design, 23 (2006) 276:296
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Motivati
)

Terrain data reconstruction

Nonoscillatory Spline Model (Dataset 31) Conventional Spline Reflectance Model (Dataset 31)

Cubic L! spline

2From J. Lavery, Computer Aided Geometric Design, 18 (2001) 321:343
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Motivation: L1 spllnes
-0

Terrain data reconstruction

Cubic L spline Cubic L2 spline (Least-Squares) 3 (16 x 16)

3From J. Lavery, Computer Aided Geometric Design, 22 (2005) 818:837
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Motivation: L1 splines
>0

Terrain data reconstruction

Spors Buldng 123120 Clls

Data (128 x 128)

L1 Approsinaten o Spots Suldng 16 1 Cels 12 Appresimation f Spots Biding 15 115 el

Cubic L! spline (16 x 16)

*Courtesy from J. Lavery et al.
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Motivation: L splines
-0
“ Finit ment approach

Terrain data reconstruction
Numeric

L* splines (J. Lavery et al. ARO and NCSU)

Observations:

o L1 splines are less oscillatory than L2 splines.
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Motivation: s splines
CO Finite element approach
Impl tion details

Terrain data reconstruction . N
Numerical results

L* splines (J. Lavery et al. ARO and NCSU)

Observations:
o L1 splines are less oscillatory than L2 splines.

o L! splines can compress data better than L? splines.
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Motivation: Lt splines
C” Finite element approach
Implem tion details

Terrain data reconstruction . N
Numerical results

C° Finite element approach

QCR?
Th mesh composed of triangles/quadrangles.
V), set of vertices of 7j,.

.7-",’; set of interior edges.

Data given at the vertices of the mesh, (d,)vey,
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Motivation: Lt splines
C” Finite element approach
Implementation details

Terrain data reconstruction N
Numeric esults

C° Finite element approach

QCR?
Th mesh composed of triangles/quadrangles.
V), set of vertices of 7j,.

.7-",’; set of interior edges.

Data given at the vertices of the mesh, (d,)vey,

Problem

Given data at the nodes of I, construct a smooth non-oscillatory
representation of the data, (d,)vcy,.
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Motivation: Lt splines
C” Finite element approach
Implem ion details

Terrain data reconstruction N
Numeric esults

C° Finite element approach

@ Define manifold

={¢€C%(Q); ¢l € P3/Qs, VK € Th, ¢(v) = dy, Vv € V4}.

Dobrev/Guermond/Popov APPROXIMATING PDE's IN L!



Motivation: Lt splines
C” Finite element approach
ion details

Terrain data reconstruction . N
Numerical results

C° Finite element approach

@ Define manifold

Xyh = {¢ € C°(Q); ¢l € P3/Qs, VK € Ty, ¢(v) = dy, Vv € Vy}.

@ Let « be a real positive number. Define functional

NOESS /K<|uxxw+2|uxy|+|uyy|>+a 3 /F|{anu}|

KET, Fer]
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Motivation: Lt splines
C” Finite element approach
ion details

Terrain data reconstruction . N
Numerical results

C° Finite element approach

@ Define manifold

Xyh = {¢ € C°(Q); ¢l € P3/Qs, VK € Ty, ¢(v) = dy, Vv € Vy}.

@ Let « be a real positive number. Define functional

NOESS /K<|uxxw+2|uxy|+|uyy|>+a 3 /F|{anu}|

KET, Fer]

@ Problem

‘ u = argmin,, ¢ x, Jo(w) ‘

Dobrev/Guermond/Popov APPROXIMATING PDE's IN L!



Motivation: LY splines
CO Finite element approach
Implementation details

Terrain data reconstruction . N
Numerical results

Implementation details

a =0 or small — v is P;/Q; interpolant.

o large — C! smoothness.

(]

("]

@ In practice we take o = 3.

e Quadrature must be rich enough (9 to 12 points).
(]

Interior point method
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Motivation: Lt splines

>0

CP Finite element approach
Implementation details

Terrain data reconstruction q
Numerical results

Numerical results: 16x16, 3D view
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Motivation: Lt splines

>0

CP Finite element approach
Implementation details

Terrain data reconstruction q
Numerical results

Numerical results: 16x16, 3D view
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fotivation: Lt splines
C" Finite element approac
Implementation d s

Terrain data reconstruction q
Numerical results

Numerical results: 16x16, level sets L2/L1
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Motivation: Lt splines
CP Finite element approach
Implementation details

Terrain data reconstruction q
Numerical results

Numerical results: Lavery's test case; Q1
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Motivation: Lt splines
CP Finite element approach
Implementation details

Terrain data reconstruction q
Numerical results

Numerical results: Lavery's test case; L1
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Motivation: Lt splines
CP Finite element approach
Implementation details

Terrain data reconstruction q
Numerical results

Numerical results: Lavery's test case; L2
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Motivation: Lt splines
CP Finite element approach
Implementation details

Terrain data reconstruction q
Numerical results

Numerical results: Austin West DEM
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Motivation: Lt splines
CP Finite element approach
Implementation details

Terrain data reconstruction q
Numerical results

Numerical results: Barton creek; @

",
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Motivation: Lt splines
CP Finite element approach
Implementation details

Terrain data reconstruction q
Numerical results

Numerical results: Barton creek; L1
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Motivation: Lt splines
CP Finite element approach
Implementation details

Terrain data reconstruction q
Numerical results

Numerical results: Barton creek; L2
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Motivation: Lt splines
CP Finite element approach
Implementation details

Terrain data reconstruction q
Numerical results

Numerical results: The peppers
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Motivation: Lt splines
CP Finite element approach
Implementation details

Terrain data reconstruction q
Numerical results

Numerical results: The peppers; zoomed
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Motivation: Lt splines
CP Finite element approach
Implementation details

Terrain data reconstruction q
Numerical results

Numerical results: The peppers; zoomed /Photoshop CS3
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Motivation: Lt splines
CP Finite element approach
Implementation details

Terrain data reconstruction q
Numerical results

Numerical results: The peppers; zoomed /L1
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Motivation: Lt splines

>0

CP Finite element approach
Implementation details

Terrain data reconstruction q
Numerical results

Numerical results: Barton creek

THE END
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