APPROXIMATING PDE's IN L¹

Veselin Dobrev Jean-Luc Guermond Bojan Popov

Department of Mathematics Texas A&M University

NONLINEAR APPROXIMATION TECHNIQUES USING L¹ Texas A&M May 16-18, 2008

Dobrev/Guermond/Popov APPROXIMATING PDE's IN L¹

Outline

Dobrev/Guermond/Popov APPROXIMATING PDE's IN L¹

Outline

2 Steady Hamilton Jacobi equations in $L^1(\Omega)$

Outline

2 Steady Hamilton Jacobi equations in $L^1(\Omega)$

Dobrev/Guermond/Popov APPROXIMATING PDE's IN L¹

motivation Viscosity solutions Why L¹ for viscosity solutions? The theory Numerics

Outline

 $\fbox{2}$ Steady Hamilton Jacobi equations in $L^1(\Omega)$

同 ト イ ヨ ト イ ヨ ト

motivation

Viscosity solutions Why L^1 for viscosity solutions? The theory Numerics

Motivation

• Advection dominated problem:

$$u + \beta \cdot \nabla u - \epsilon \nabla^2 u = f;$$
 $u|_{\partial \Omega} = 0$

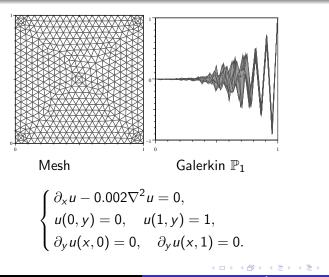
- Approximation on coarse mesh $\|\beta\|_{L^{\infty}}h \gg \epsilon$.
- Standard discretization \Rightarrow Spurious oscillations

A B > A B >

motivation

Viscosity solutions Why L^1 for viscosity solutions? The theory Numerics

Galerkin/Finite Elements



motivation Viscosity solutions Why L^{I} for viscosity solutions? The theory Numerics

Viscosity solutions of PDE's

In $\Omega \in \mathbb{R}^d$ consider:

$$\alpha u + \nabla \cdot f(u) = g; \quad u|_{\partial \Omega} = u_0.$$

Ill-posed in standard sense, but notion of viscosity solution applies (Bardos, Leroux, and Nédélec (1979), Kružkov ...)

motivation Viscosity solutions Why L^{1} for viscosity solutions? The theory Numerics

Viscosity solutions of PDE's

 \bullet The viscosity solution can be interpreted as the ${\sf limit}_{\varepsilon \to 0}$ of

$$\alpha u + \nabla \cdot f(u) - \epsilon \nabla^2 u = g; \quad u|_{\partial \Omega} = u_0.$$

同 ト イ ヨ ト イ ヨ ト

motivation Viscosity solutions Why L^{I} for viscosity solutions? The theory Numerics

Viscosity solutions of PDE's

 \bullet The viscosity solution can be interpreted as the limit_{\epsilon \rightarrow 0} of

$$\alpha u + \nabla \cdot f(u) - \epsilon \nabla^2 u = g; \quad u|_{\partial \Omega} = u_0.$$

• One tries to solve the ill-posed pb when $\epsilon \ll \|f'\|_{L^{\infty}}h$.

/□ ▶ < 글 ▶ < 글

motivation Viscosity solutions Why L^{I} for viscosity solutions? The theory Numerics

Viscosity solutions of PDE's

 \bullet The viscosity solution can be interpreted as the limit_{\epsilon \rightarrow 0} of

$$\alpha u + \nabla \cdot f(u) - \epsilon \nabla^2 u = g; \quad u|_{\partial \Omega} = u_0.$$

• One tries to solve the ill-posed pb when $\epsilon \ll \|f'\|_{L^{\infty}}h$.

A good scheme should be able to approximate the viscosity solution!

→ Ξ →

motivation Viscosity solutions Why L^1 for viscosity solutions? The theory Numerics

Why L^1 for viscosity solutions?

• Let u_{visc} be viscosity solution of $v_{\text{visc}} + v'_{\text{visc}} = f$, in (0, 1), $v_{\text{visc}}(0) = 0$, $v_{\text{visc}}(1) = 0$.

< 同 > < 回 > < 回 >

motivation Viscosity solutions Why L^1 for viscosity solutions? The theory Numerics

Why L^1 for viscosity solutions?

- Let u_{visc} be viscosity solution of $v_{\text{visc}} + v'_{\text{visc}} = f$, in (0, 1), $v_{\text{visc}}(0) = 0$, $v_{\text{visc}}(1) = 0$.
- Let \tilde{f} be the zero extension of f on $(-\infty, +\infty)$. Let \tilde{u} solve $v + v' = \tilde{f} - u_{\text{visc}}(1)\delta(1)$, in $(-\infty, +\infty)$, and $v(-\infty) = 0$, $v(+\infty) = 0$.

伺 と く ヨ と く ヨ と

motivation Viscosity solutions Why L^1 for viscosity solutions? The theory Numerics

Why L^1 for viscosity solutions?

• Let u_{visc} be viscosity solution of $v_{\text{visc}} + v'_{\text{visc}} = f$, in (0, 1), $v_{\text{visc}}(0) = 0$, $v_{\text{visc}}(1) = 0$.

• Let \tilde{f} be the zero extension of f on $(-\infty, +\infty)$. Let \tilde{u} solve $v + v' = \tilde{f} - \frac{u_{\text{visc}}(1)\delta(1)}{v(-\infty)}$, in $(-\infty, +\infty)$, and $v(-\infty) = 0$, $v(+\infty) = 0$.

Lemma

 $\tilde{u}_{|[0,1)} = u_{visc}.$

・ロト ・回ト ・ヨト ・ヨト

motivation Viscosity solutions Why L^1 for viscosity solutions? The theory Numerics

Why L^1 for viscosity solutions?

• Let u_{visc} be viscosity solution of $v_{\text{visc}} + v'_{\text{visc}} = f$, in (0, 1), $v_{\text{visc}}(0) = 0$, $v_{\text{visc}}(1) = 0$.

• Let \tilde{f} be the zero extension of f on $(-\infty, +\infty)$. Let \tilde{u} solve $v + v' = \tilde{f} - u_{\text{visc}}(1)\delta(1)$, in $(-\infty, +\infty)$, and $v(-\infty) = 0$, $v(+\infty) = 0$.

Lemma

 $\tilde{u}_{|[0,1)} = u_{visc}.$

 \tilde{u} solves well-posed pb with RHS bounded measure ($\approx L^1(\mathbb{R})$)

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

motivation Viscosity solutions Why L^1 for viscosity solutions? **The theory** Numerics

Viscosity solutions: Theory

• Consider the 1D pb:

$$u + \beta(x)u' = f$$
 in $(0, 1)$, $u(0) = 0$, $u(1) = 0$.

同 ト イヨ ト イヨ ト

motivation Viscosity solutions Why L¹ for viscosity solutions? **The theory** Numerics

Viscosity solutions: Theory

• Consider the 1D pb:

$$u + \beta(x)u' = f$$
 in $(0, 1)$, $u(0) = 0$, $u(1) = 0$.

- Assume $0 < \inf \beta$, $\sup \beta' < 1$ and $f \in L^1$.
- Use piecewise linear polynomials.
- Use midpoint rule to approximate the integrals.

→ 3 → < 3</p>

motivation Viscosity solutions Why L¹ for viscosity solutions? **The theory** Numerics

Viscosity solutions: Theory

• Consider the 1D pb:

$$u + \beta(x)u' = f$$
 in $(0, 1)$, $u(0) = 0$, $u(1) = 0$.

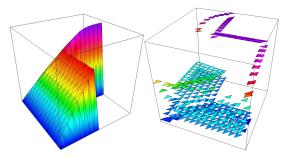
- Assume $0 < \inf \beta$, $\sup \beta' < 1$ and $f \in L^1$.
- Use piecewise linear polynomials.
- Use midpoint rule to approximate the integrals.

Theorem (Guermond-Popov (2007))

The best L^1 -approximation converges in $W^{1,1}_{loc}([0,1))$ to the viscosity solution, and the boundary layer is always located in the last mesh cell.

motivation Viscosity solutions Why L^1 for viscosity solutions? The theory Numerics

Ill-posed transport in 2D



• \mathbb{P}_1 elements + preconditioned interior point method.

$$\begin{cases} u + \partial_x u + \sqrt{2} \partial_y u = 1\\ u|_{\partial \Omega} = 0. \end{cases}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Theory Discretization Numerical tests

2 Steady Hamilton Jacobi equations in $L^1(\Omega)$

A B > A B >

Theory Discretization Numerical tests

Theory

- Let Ω be a smooth domain in \mathbb{R}^2 .
- Consider

$$H(x, u, \nabla u) = 0, \quad u|_{\partial\Omega} = \alpha.$$

- *H* is convex $(||\xi|| \le c(1 + |H(x, v, \xi)| + |v|)).$
- *H* is Lipschitz.

同 ト イ ヨ ト イ ヨ ト

Theory Discretization Numerical tests

Theory

Assume that Ω, f and α are smooth enough for a viscosity solution to exist u ∈ W^{1,∞}(Ω), ∇u ∈ BV(Ω) and u p-semi-concave.

Definition

v is p-semi-concave if there is a concave function $v_c \in W^{1,\infty}$ and a function $w \in W^{2,p}$ so that $v = v_c + w$.

| 4 同 1 4 三 1 4 三 1

Theory Discretization Numerical tests

Discretization

- $\{\mathcal{T}_h\}_{h>0}$ regular mesh family.
- $X_h^{\alpha_h} = \{ v_h \in \mathcal{C}^0(\Omega); v_h | K \in \mathbb{P}_k, \forall K \in \mathcal{T}_h, v_h |_{\partial \Omega} = \alpha_h \}.$
- Take p > 2 (p > 1 in one space dimension).
- Define

$$J_h(v_h) = \|H(\cdot, v_h, \nabla v_h)\|_{L^1(\Omega)} + h^{2-p} \sum_{F \in \mathcal{F}_h^i} \int_F (\{-\partial_n v_h\}_+)^p.$$

| 4 同 1 4 三 1 4 三 1

Theory Discretization Numerical tests

Discretization

- $\{\mathcal{T}_h\}_{h>0}$ regular mesh family.
- $X_h^{\alpha_h} = \{ v_h \in \mathcal{C}^0(\Omega); v_h | K \in \mathbb{P}_k, \forall K \in \mathcal{T}_h, v_h |_{\partial \Omega} = \alpha_h \}.$
- Take p > 2 (p > 1 in one space dimension).
- Define

$$J_h(v_h) = \|H(\cdot, v_h, \nabla v_h)\|_{L^1(\Omega)} + h^{2-p} \sum_{F \in \mathcal{F}_h^i} \int_F \left(\{-\partial_n v_h\}_+\right)^p.$$

Compute
$$u_h \in X_h^{\alpha_h}$$
 s.t., $J(u_h) = \min_{v_h \in X_h^{\alpha_h}} J_h(v_h).$

ト ・ 同 ト ・ ヨ ト ・ ヨ ト

Theory Discretization Numerical tests

Discretization: convergence

Theorem (Guermond-Popov (2008) 1D, and (200?) 2D)

 u_h converges to the viscosity solution strongly in $W^{1,1}(\Omega)$ (the result holds for arbitrary polynomial degree provided an additional volume entropy is added)

日本 (日本) (日本)

Theory Discretization Numerical tests

Discretization: algorithms 1D

• Optimal complexity algorithm developed in Guermond-Marpeau-Popov (2008). Algorithm $\rightarrow \tilde{u}_h$

Theorem (Guermond-Popov (200?) 1D)

 \tilde{u}_h converges to the viscosity solution strongly in $W^{1,1}(\Omega)$ and complexity of the algorithm is O(1/h).

/□ ▶ < 글 ▶ < 글

Theory Discretization Numerical tests

Discretization: algorithms 1D

• Optimal complexity algorithm developed in Guermond-Marpeau-Popov (2008). Algorithm $\rightarrow \tilde{u}_h$

Theorem (Guermond-Popov (200?) 1D)

 \tilde{u}_h converges to the viscosity solution strongly in $W^{1,1}(\Omega)$ and complexity of the algorithm is O(1/h).

• The algorithm is similar to the fast marching and fast sweeping methods (instead of choosing maximal solution, choose the entropy-minimizing solution).

ト 4 同 ト 4 国 ト 4 国 ト

Theory Discretization Numerical tests

1D convergence tests

•
$$\Omega = [0,1], \quad u + \frac{1}{\pi}(u')^2 = f(x), \quad u(0) = u(1) = -1.$$

- 4 回 2 - 4 □ 2 - 4 □

Dobrev/Guermond/Popov APPROXIMATING PDE's IN L¹

Theory Discretization Numerical tests

1D convergence tests

•
$$\Omega = [0,1], \quad u + \frac{1}{\pi}(u')^2 = f(x), \quad u(0) = u(1) = -1.$$

• Data:
$$f(x) = -|\cos(\pi x)| + \sin^2(\pi x)$$
,

- 4 回 2 - 4 □ 2 - 4 □

Theory Discretization Numerical tests

1D convergence tests

•
$$\Omega = [0,1], \quad u + \frac{1}{\pi}(u')^2 = f(x), \quad u(0) = u(1) = -1.$$

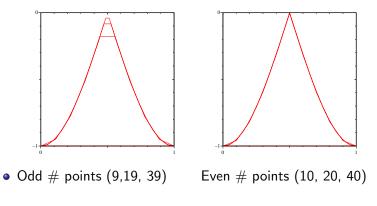
• Data:
$$f(x) = -|\cos(\pi x)| + \sin^2(\pi x)$$
,

• Exact solution: $u(x) = -|\cos(\pi x)|$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Theory Discretization Numerical tests

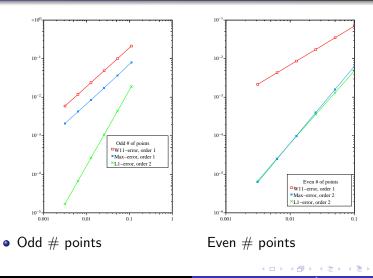
1D convergence tests



A B > A B >

Theory Discretization Numerical tests

1D convergence tests



Dobrev/Guermond/Popov APPROXIMATING PDE's IN L¹

Theory Discretization Numerical tests

1D convergence tests

•
$$(u')^2 + 3u + \frac{1}{2}x^2 - |x| = 0$$
, in (-0.95, 0.95)

- 4 回 2 - 4 □ 2 - 4 □

Theory Discretization Numerical tests

1D convergence tests

•
$$(u')^2 + 3u + \frac{1}{2}x^2 - |x| = 0$$
, in (-0.95, 0.95)

• Boundary condition set so that the viscosity solution u_{visc} is $u_{\text{visc}}(x) = -\frac{1}{2}x^2 + \frac{2}{3}|x|^{\frac{3}{2}}$, i.e. $u(\pm 0.95) = u_{\text{visc}}(\pm 0.95)$

Theory Discretization Numerical tests

1D convergence tests

•
$$(u')^2 + 3u + \frac{1}{2}x^2 - |x| = 0$$
, in (-0.95, 0.95)

• Boundary condition set so that the viscosity solution u_{visc} is $u_{\text{visc}}(x) = -\frac{1}{2}x^2 + \frac{2}{3}|x|^{\frac{3}{2}}$, i.e. $u(\pm 0.95) = u_{\text{visc}}(\pm 0.95)$

•
$$u_{\mathsf{visc}}$$
 is in $W^{1,\infty}(\Omega) \cap W^{2,p}(\Omega)$ for any $p \in [1,2)$

Theory Discretization Numerical tests

1D convergence tests

•
$$(u')^2 + 3u + \frac{1}{2}x^2 - |x| = 0$$
, in (-0.95, 0.95)

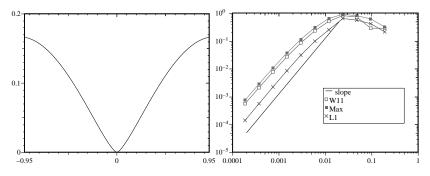
• Boundary condition set so that the viscosity solution u_{visc} is $u_{\text{visc}}(x) = -\frac{1}{2}x^2 + \frac{2}{3}|x|^{\frac{3}{2}}$, i.e. $u(\pm 0.95) = u_{\text{visc}}(\pm 0.95)$

•
$$u_{\mathsf{visc}}$$
 is in $W^{1,\infty}(\Omega) \cap W^{2,p}(\Omega)$ for any $p \in [1,2)$

•
$$u_{\text{visc}}$$
 is *p*-semi-concave for any $p \in [1, 2)$

Theory Discretization Numerical tests

1D convergence tests



< 同 ▶

Theory Discretization Numerical tests

Eikonal equation 2D

•
$$\Omega = [0, 1]^2$$
, $\|\nabla u\| = 1$, $u|_{\partial \Omega} = 0$.

< 回 > < 回 > < 回 >

Dobrev/Guermond/Popov APPROXIMATING PDE's IN L¹

Theory Discretization Numerical tests

Eikonal equation 2D

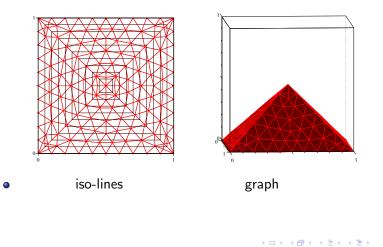
•
$$\Omega = [0, 1]^2$$
, $\|\nabla u\| = 1$, $u|_{\partial \Omega} = 0$.

• Exact solution: $u(x) = dist(x, \partial \Omega)$

同 ト イ ヨ ト イ ヨ ト

Theory Discretization Numerical tests

Eikonal equation 2D: \mathbb{P}_1 finite elements



Theory Discretization Numerical tests

Eikonal equation 2D: \mathbb{P}_1 finite elements

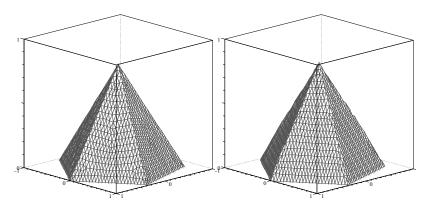


Figure: Pentagon: Aligned unstructured mesh (left); Non-aligned unstructured mesh (right).

| 4 同 1 4 三 1 4 三 1

Theory Discretization Numerical tests

Eikonal equation 2D: \mathbb{P}_1 finite elements

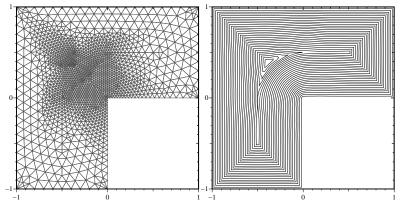


Figure: L-shaped domain: Unstructured mesh (left); Iso-lines of approximate minimizer (right).

同 ト イ ヨ ト イ ヨ ト

Theory Discretization Numerical tests

Algorithms in 2D

• Computation done using Newton+regularization (similar flavor to interior point).

伺 ト く ヨ ト く ヨ ト

Theory Discretization Numerical tests

Algorithms in 2D

• Computation done using Newton+regularization (similar flavor to interior point).

Conjecture

Fast sweeping/marching techniques produce L¹ almost minimizers.

(4) (E) (A) (E) (A)

Motivation: L^1 splines C^0 Finite element approach Implementation details Numerical results

Outline

 $\fbox{2}$ Steady Hamilton Jacobi equations in $L^1(\Omega)$

同 ト イ ヨ ト イ ヨ ト

 $\begin{array}{l} \mbox{Motivation: } {\cal L}^1 \mbox{ splines} \\ {\cal C}^0 \mbox{ Finite element approach} \\ \mbox{Implementation details} \\ \mbox{Numerical results} \end{array}$

L¹ splines (J. Lavery *et al.* ARO and NCSU)

Problem: Given a set of data in \mathbb{R}^d , (d = 1, 2), construct a spline approximation

¹From J. Lavery, Computer Aided Geometric Design, 23 (2006) 276:296

Dobrev/Guermond/Popov APPROXIMATING PDE's IN L¹

 $\begin{array}{l} \mbox{Motivation: } {\cal L}^1 \mbox{ splines} \\ {\cal C}^0 \mbox{ Finite element approach } \\ \mbox{Implementation details} \\ \mbox{Numerical results} \end{array}$

L¹ splines (J. Lavery *et al.* ARO and NCSU)

Problem: Given a set of data in \mathbb{R}^d , (d = 1, 2), construct a spline approximation

Solution: Minimize the L^p-norm of second derivative.

¹From J. Lavery, *Computer Aided Geometric Design*, 23 (2006) 276:296

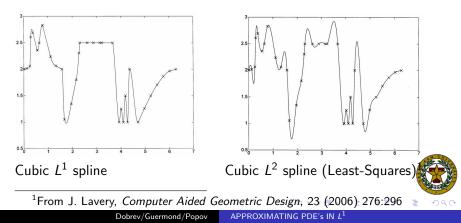
Dobrev/Guermond/Popov APPROXIMATING PDE's IN L¹

 $\begin{array}{l} \mbox{Motivation: } {\cal L}^1 \mbox{ splines} \\ {\cal C}^0 \mbox{ Finite element approach } \\ \mbox{Implementation details} \\ \mbox{Numerical results} \end{array}$

L¹ splines (J. Lavery *et al.* ARO and NCSU)

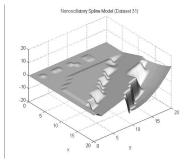
Problem: Given a set of data in \mathbb{R}^d , (d = 1, 2), construct a spline approximation

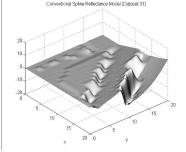
Solution: Minimize the L^p-norm of second derivative.



 $\begin{array}{l} \mbox{Motivation: } \textit{L}^1 \mbox{ splines} \\ \mathcal{C}^0 \mbox{ Finite element approach} \\ \mbox{Implementation details} \\ \mbox{Numerical results} \end{array}$

L^1 splines (J. Lavery *et al.* ARO and NCSU)





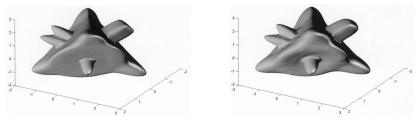
Cubic L^1 spline

Cubic L^2 spline (Least-Squares)²

²From J. Lavery, *Computer Aided Geometric Design*, 18 (2001) 321:343 Dobrey/Guermond/Popoy

 $\begin{array}{l} \mbox{Motivation: } {\cal L}^1 \mbox{ splines} \\ {\cal C}^0 \mbox{ Finite element approach} \\ \mbox{Implementation details} \\ \mbox{Numerical results} \end{array}$

L^1 splines (J. Lavery *et al.* ARO and NCSU)



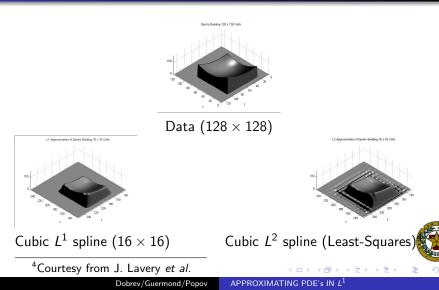
Cubic L^1 spline

Cubic L^2 spline (Least-Squares) ³ (16 × 16)

³From J. Lavery, *Computer Aided Geometric Design*, 22 (2005) 818:837

 $\begin{array}{l} \mbox{Motivation: } {\cal L}^1 \mbox{ splines} \\ {\cal C}^0 \mbox{ Finite element approach} \\ \mbox{Implementation details} \\ \mbox{Numerical results} \end{array}$

L¹ splines (J. Lavery *et al.* ARO and NCSU)



 $\begin{array}{l} \mbox{Motivation: } {\cal L}^1 \mbox{ splines} \\ {\cal C}^0 \mbox{ Finite element approach} \\ \mbox{Implementation details} \\ \mbox{Numerical results} \end{array}$

 L^1 splines (J. Lavery *et al.* ARO and NCSU)

Observations:

• L^1 splines are less oscillatory than L^2 splines.

伺 ト イヨト イヨト

 $\begin{array}{l} \mbox{Motivation: } {\cal L}^1 \mbox{ splines} \\ {\cal C}^0 \mbox{ Finite element approach } \\ \mbox{Implementation details} \\ \mbox{Numerical results} \end{array}$

 L^1 splines (J. Lavery *et al.* ARO and NCSU)

Observations:

- L^1 splines are less oscillatory than L^2 splines.
- L^1 splines can compress data better than L^2 splines.

Motivation: L^1 splines C^0 Finite element approach Implementation details Numerical results

\mathcal{C}^0 Finite element approach

- $\Omega \subset \mathbb{R}^2$
- T_h mesh composed of triangles/quadrangles.
- \mathcal{V}_h set of vertices of \mathcal{T}_h .
- \mathcal{F}_h^i set of interior edges.
- Data given at the vertices of the mesh, $(d_v)_{v\in\mathcal{V}_h}$

Motivation: L^1 splines C^0 Finite element approach Implementation details Numerical results

\mathcal{C}^0 Finite element approach

- $\Omega \subset \mathbb{R}^2$
- T_h mesh composed of triangles/quadrangles.
- \mathcal{V}_h set of vertices of \mathcal{T}_h .
- \mathcal{F}_h^i set of interior edges.
- Data given at the vertices of the mesh, $(d_v)_{v\in\mathcal{V}_h}$

Problem

Given data at the nodes of \mathcal{T}_h , construct a smooth non-oscillatory representation of the data, $(d_v)_{v \in \mathcal{V}_h}$.

Motivation: L^1 splines C^0 Finite element approach Implementation details Numerical results

\mathcal{C}^0 Finite element approach

Define manifold

 $X_h = \{ \phi \in \mathcal{C}^0(\overline{\Omega}); \ \phi|_{\mathcal{K}} \in \mathbb{P}_3/\mathbb{Q}_3, \ \forall \mathcal{K} \in \mathcal{T}_h, \ \phi(v) = d_v, \forall v \in \mathcal{V}_h \}.$

同 ト イ ヨ ト イ ヨ ト

Motivation: L^1 splines C^0 Finite element approach Implementation details Numerical results

\mathcal{C}^0 Finite element approach

Define manifold

$$X_h = \{\phi \in \mathcal{C}^0(\overline{\Omega}); \; \phi|_{\mathcal{K}} \in \mathbb{P}_3/\mathbb{Q}_3, \; orall \mathcal{K} \in \mathcal{T}_h, \; \phi(v) = d_v, orall v \in \mathcal{V}_h \}.$$

 $\bullet\,$ Let α be a real positive number. Define functional

$$J_h(u) = \sum_{K \in \mathcal{T}_h} \int_K \left(|u_{xx}| + 2|u_{xy}| + |u_{yy}| \right) + \alpha \sum_{F \in \mathcal{F}_h^i} \int_F |\{\partial_n u\}|$$

∃ ► < ∃ ►</p>

Motivation: L^1 splines C^0 Finite element approach Implementation details Numerical results

\mathcal{C}^0 Finite element approach

Define manifold

$$X_h = \{\phi \in \mathcal{C}^0(\overline{\Omega}); \ \phi|_{\mathcal{K}} \in \mathbb{P}_3/\mathbb{Q}_3, \ \forall \mathcal{K} \in \mathcal{T}_h, \ \phi(v) = d_v, \forall v \in \mathcal{V}_h\}.$$

 $\bullet\,$ Let α be a real positive number. Define functional

$$J_h(u) = \sum_{K \in \mathcal{T}_h} \int_K \left(|u_{xx}| + 2|u_{xy}| + |u_{yy}| \right) + \alpha \sum_{F \in \mathcal{F}_h^i} \int_F |\{\partial_n u\}|$$

Problem

$$u = \operatorname{argmin}_{w \in X_h} J_h(w)$$

∃ ► < ∃ ►</p>

 $\begin{array}{l} \mbox{Motivation: } L^1 \mbox{ splines} \\ \mathcal{C}^0 \mbox{ Finite element approach} \\ \mbox{Implementation details} \\ \mbox{Numerical results} \end{array}$

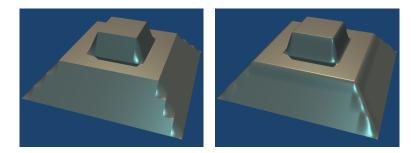
Implementation details

- $\alpha = 0$ or small $\longrightarrow u$ is $\mathbb{P}_1/\mathbb{Q}_1$ interpolant.
- α large $\longrightarrow C^1$ smoothness.
- In practice we take $\alpha = 3$.
- Quadrature must be rich enough (9 to 12 points).
- Interior point method

伺 ト イヨト イヨト

Motivation: L^1 splines C^0 Finite element approach Implementation details Numerical results

Numerical results: 16x16, 3D view

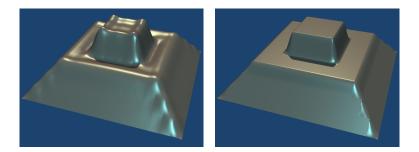


イロト イポト イヨト イヨト

Dobrev/Guermond/Popov APPROXIMATING PDE's IN L¹

 $\begin{array}{l} \mbox{Motivation: } L^1 \mbox{ splines} \\ \mathcal{C}^0 \mbox{ Finite element approach} \\ \mbox{Implementation details} \\ \mbox{Numerical results} \end{array}$

Numerical results: 16x16, 3D view

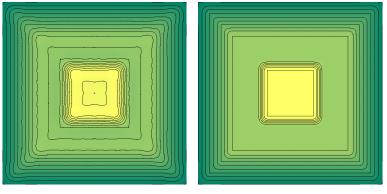


イロト イポト イヨト イヨト

Dobrev/Guermond/Popov APPROXIMATING PDE's IN L¹

 $\begin{array}{l} \mbox{Motivation: } L^1 \mbox{ splines} \\ \mathcal{C}^0 \mbox{ Finite element approach} \\ \mbox{Implementation details} \\ \mbox{Numerical results} \end{array}$

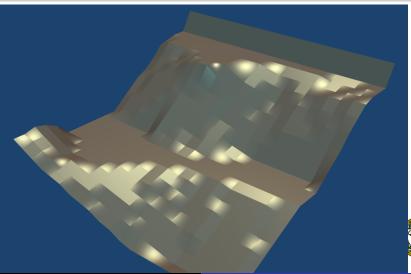
Numerical results: 16x16, level sets L2/L1



<ロ> (日) (日) (日) (日) (日)

 $\begin{array}{l} \mbox{Motivation: } L^1 \mbox{ splines} \\ \mathcal{C}^0 \mbox{ Finite element approach} \\ \mbox{Implementation details} \\ \mbox{Numerical results} \end{array}$

Numerical results: Lavery's test case; Q1

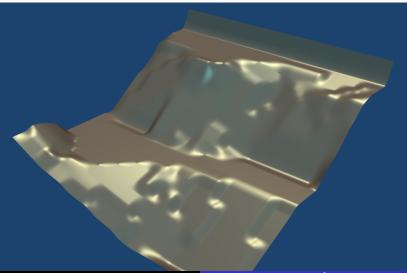


Dobrev/Guermond/Popov

APPROXIMATING PDE's IN L1

 $\begin{array}{l} \mbox{Motivation: } L^1 \mbox{ splines} \\ \mathcal{C}^0 \mbox{ Finite element approach} \\ \mbox{Implementation details} \\ \mbox{Numerical results} \end{array}$

Numerical results: Lavery's test case; L1

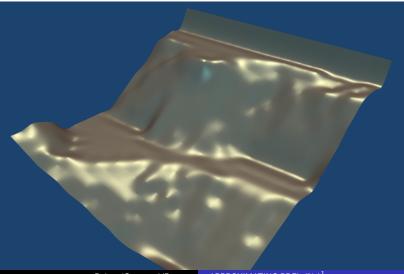


Dobrev/Guermond/Popov

APPROXIMATING PDE's IN L^1

 $\begin{array}{l} \mbox{Motivation: } L^1 \mbox{ splines} \\ \mathcal{C}^0 \mbox{ Finite element approach} \\ \mbox{Implementation details} \\ \mbox{Numerical results} \end{array}$

Numerical results: Lavery's test case; L2

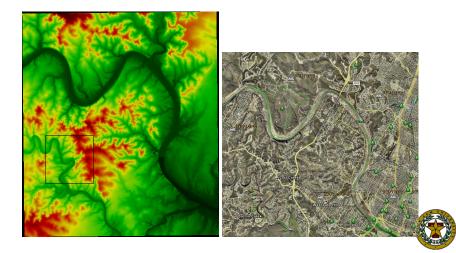


Dobrev/Guermond/Popov

APPROXIMATING PDE's IN L1

 $\begin{array}{l} \mbox{Motivation: } L^1 \mbox{ splines} \\ \mathcal{C}^0 \mbox{ Finite element approach} \\ \mbox{Implementation details} \\ \mbox{Numerical results} \end{array}$

Numerical results: Austin West DEM

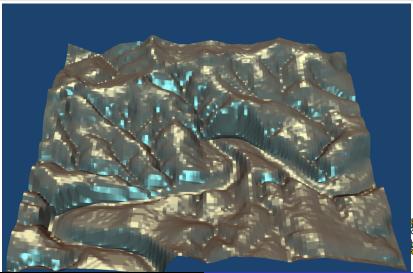


Dobrev/Guermond/Popov APPROXIMATING PDE's IN L¹

<ロ> <同> <同> < 同> < 同>

Motivation: L^1 splines C^0 Finite element approach Implementation details Numerical results

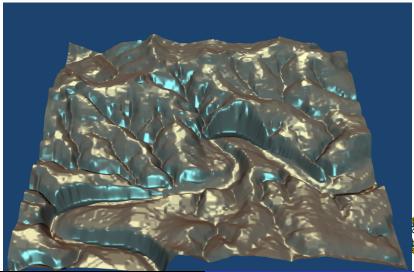
Numerical results: Barton creek; Q_1



APPROXIMATING PDE's IN L1

Motivation: L^1 splines C^0 Finite element approach Implementation details Numerical results

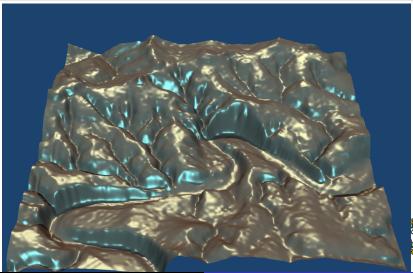
Numerical results: Barton creek; L1



APPROXIMATING PDE's IN L^1

Ill-posed transport equations Steady Hamilton Jacobi equations in $L^1(\Omega)$ Terrain data reconstruction Motivation: L^1 splines C^0 Finite element approach Implementation details Numerical results

Numerical results: Barton creek; L2



APPROXIMATING PDE's IN L^1

Motivation: L^1 splines C^0 Finite element approach Implementation details Numerical results

Numerical results: The peppers

Dobrev/Guermond/Popov APPROXIMATING PDE's IN L¹

Motivation: L^1 splines C^0 Finite element approach Implementation details Numerical results

Numerical results: The peppers; zoomed

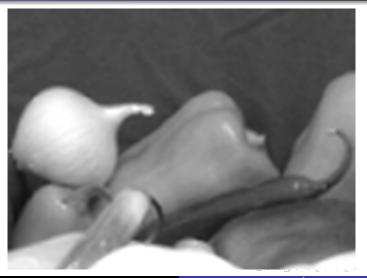
Dobrev/Guermond/Popov APPROXIMATING PDE's IN L¹

Ill-posed transport equations Steady Hamilton Jacobi equations in $L^1(\Omega)$ Terrain data reconstruction $\begin{array}{l} \mbox{Motivation: } L^1 \mbox{ splines} \\ \mathcal{C}^0 \mbox{ Finite element approach} \\ \mbox{Implementation details} \\ \mbox{Numerical results} \end{array}$

Numerical results: The peppers; zoomed/Photoshop CS3

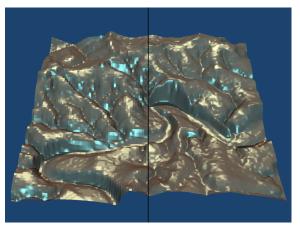
 $\begin{array}{l} \mbox{Motivation: } L^1 \mbox{ splines} \\ \mathcal{C}^0 \mbox{ Finite element approach} \\ \mbox{Implementation details} \\ \mbox{Numerical results} \end{array}$

Numerical results: The peppers; zoomed/L1



 $\begin{array}{l} \mbox{Motivation: } L^1 \mbox{ splines} \\ \mathcal{C}^0 \mbox{ Finite element approach} \\ \mbox{Implementation details} \\ \mbox{Numerical results} \end{array}$

Numerical results: Barton creek



THE END

Dobrev/Guermond/Popov AP

APPROXIMATING PDE's IN L^1

<ロ> <同> <同> < 同> < 同>