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Motivation

Advection dominated problem:

u + β·∇u − ε∇2u = f ; u|∂Ω = 0

Approximation on coarse mesh ‖β‖L∞h� ε.

Standard discretization ⇒ Spurious oscillations
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Galerkin/Finite Elements
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Mesh Galerkin P1
∂xu − 0.002∇2u = 0,

u(0, y) = 0, u(1, y) = 1,

∂yu(x , 0) = 0, ∂yu(x , 1) = 0.
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Viscosity solutions of PDE’s

In Ω ∈ Rd consider:

αu +∇·f (u) = g ; u|∂Ω = u0.

Ill-posed in standard sense, but notion of viscosity solution applies
(Bardos, Leroux, and Nédélec (1979), Kružkov ...)
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Viscosity solutions of PDE’s

The viscosity solution can be interpreted as the limitε→0 of

αu +∇·f (u)− ε∇2u = g ; u|∂Ω = u0.

One tries to solve the ill-posed pb when ε� ‖f ′‖L∞h.

A good scheme should be able to
approximate the viscosity solution!
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Why L1 for viscosity solutions?

Let uvisc be viscosity solution of
vvisc + v ′visc = f , in (0, 1), vvisc(0) = 0, vvisc(1) = 0.

Let f̃ be the zero extension of f on (−∞,+∞).
Let ũ solve v + v ′ = f̃ − uvisc(1)δ(1), in (−∞,+∞), and
v(−∞) = 0, v(+∞) = 0.

Lemma

ũ|[0,1) = uvisc.

ũ solves well-posed pb with RHS bounded measure (≈ L1(R))
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Viscosity solutions: Theory

Consider the 1D pb:

u + β(x)u′ = f in (0, 1), u(0) = 0, u(1) = 0.

Assume 0 < inf β, supβ′ < 1 and f ∈ L1.

Use piecewise linear polynomials.

Use midpoint rule to approximate the integrals.

Theorem (Guermond-Popov (2007))

The best L1-approximation converges in W 1,1
loc ([0, 1)) to the

viscosity solution, and the boundary layer is always located in the
last mesh cell.
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Ill-posed transport in 2D

P1 elements + preconditioned interior point method.{
u + ∂xu +

√
2∂yu = 1

u|∂Ω = 0.
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Theory

Let Ω be a smooth domain in R2.

Consider
H(x , u,∇u) = 0, u|∂Ω = α.

H is convex (‖ξ‖ ≤ c(1 + |H(x , v , ξ)|+ |v |)).

H is Lipschitz.
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Theory

Assume that Ω, f and α are smooth enough for a viscosity
solution to exist u ∈W 1,∞(Ω), ∇u ∈ BV (Ω) and u
p-semi-concave.

Definition

v is p-semi-concave if there is a concave function vc ∈W 1,∞ and
a function w ∈W 2,p so that v = vc + w .
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Discretization

{Th}h>0 regular mesh family.

Xαh
h = {vh ∈ C0(Ω); vh|K ∈ Pk ,∀K ∈ Th, vh|∂Ω = αh}.

Take p > 2 (p > 1 in one space dimension).

Define

Jh(vh) = ‖H(·, vh,∇vh)‖L1(Ω) + h2−p
∑

F∈F i
h

∫
F

({−∂nvh}+)p .

Compute uh ∈ Xαh
h s.t., J(uh) = min

vh∈X
αh
h

Jh(vh).
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Discretization: convergence

Theorem (Guermond-Popov (2008) 1D, and (200?) 2D)

uh converges to the viscosity solution strongly in W 1,1(Ω) (the
result holds for arbitrary polynomial degree provided an additional
volume entropy is added)
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Discretization: algorithms 1D

Optimal complexity algorithm developed in
Guermond-Marpeau-Popov (2008).
Algorithm → ũh

Theorem (Guermond-Popov (200?) 1D)

ũh converges to the viscosity solution strongly in W 1,1(Ω) and
complexity of the algorithm is O(1/h).

The algorithm is similar to the fast marching and fast
sweeping methods (instead of choosing maximal solution,
choose the entropy-minimizing solution).
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1D convergence tests

Ω = [0, 1], u + 1
π (u′)2 = f (x), u(0) = u(1) = −1.

Data: f (x) = −| cos(πx)|+ sin2(πx),

Exact solution: u(x) = −| cos(πx)|.
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1D convergence tests

(u′)2 + 3u + 1
2x2 − |x | = 0, in (−0.95, 0.95)

Boundary condition set so that the viscosity solution uvisc is

uvisc(x) = −1
2x2 + 2

3 |x |
3
2 , i.e. u(±0.95) = uvisc(±0.95)

uvisc is in W 1,∞(Ω) ∩W 2,p(Ω) for any p ∈ [1, 2)

uvisc is p-semi-concave for any p ∈ [1, 2)
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Ill-posed transport equations
Steady Hamilton Jacobi equations in L1(Ω)

Terrain data reconstruction

Theory
Discretization
Numerical tests

Eikonal equation 2D

Ω = [0, 1]2, ‖∇u‖ = 1, u|∂Ω = 0.

Exact solution: u(x) = dist(x , ∂Ω)
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Eikonal equation 2D: P1 finite elements
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Eikonal equation 2D: P1 finite elements
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Figure: Pentagon: Aligned unstructured mesh (left); Non-aligned
unstructured mesh (right).
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Eikonal equation 2D: P1 finite elements
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Figure: L-shaped domain: Unstructured mesh (left); Iso-lines of
approximate minimizer (right).
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Ill-posed transport equations
Steady Hamilton Jacobi equations in L1(Ω)

Terrain data reconstruction

Theory
Discretization
Numerical tests

Algorithms in 2D

Computation done using Newton+regularization (similar
flavor to interior point).

Conjecture

Fast sweeping/marching techniques produce L1 almost minimizers.
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Ill-posed transport equations
Steady Hamilton Jacobi equations in L1(Ω)

Terrain data reconstruction

Motivation: L1 splines
C0 Finite element approach
Implementation details
Numerical results

L1 splines (J. Lavery et al. ARO and NCSU)

Problem: Given a set of data in Rd , (d = 1, 2), construct a spline
approximation

Solution: Minimize the Lp-norm of second derivative.

Cubic L1 spline Cubic L2 spline (Least-Squares)1

1From J. Lavery, Computer Aided Geometric Design, 23 (2006) 276:296
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Cubic L1 spline Cubic L2 spline (Least-Squares)1

1From J. Lavery, Computer Aided Geometric Design, 23 (2006) 276:296
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L1 splines (J. Lavery et al. ARO and NCSU)

Problem: Given a set of data in Rd , (d = 1, 2), construct a spline
approximation
Solution: Minimize the Lp-norm of second derivative.

Cubic L1 spline Cubic L2 spline (Least-Squares)1

1From J. Lavery, Computer Aided Geometric Design, 23 (2006) 276:296
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Ill-posed transport equations
Steady Hamilton Jacobi equations in L1(Ω)

Terrain data reconstruction

Motivation: L1 splines
C0 Finite element approach
Implementation details
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L1 splines (J. Lavery et al. ARO and NCSU)

Cubic L1 spline Cubic L2 spline (Least-Squares)2

2From J. Lavery, Computer Aided Geometric Design, 18 (2001) 321:343
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Ill-posed transport equations
Steady Hamilton Jacobi equations in L1(Ω)

Terrain data reconstruction

Motivation: L1 splines
C0 Finite element approach
Implementation details
Numerical results

L1 splines (J. Lavery et al. ARO and NCSU)

Cubic L1 spline Cubic L2 spline (Least-Squares) 3 (16× 16)

3From J. Lavery, Computer Aided Geometric Design, 22 (2005) 818:837
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Ill-posed transport equations
Steady Hamilton Jacobi equations in L1(Ω)
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L1 splines (J. Lavery et al. ARO and NCSU)

Data (128× 128)

Cubic L1 spline (16× 16) Cubic L2 spline (Least-Squares)4

4Courtesy from J. Lavery et al.
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Ill-posed transport equations
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L1 splines (J. Lavery et al. ARO and NCSU)

Observations:

L1 splines are less oscillatory than L2 splines.

L1 splines can compress data better than L2 splines.
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Motivation: L1 splines
C0 Finite element approach
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C0 Finite element approach

Ω ⊂ R2

Th mesh composed of triangles/quadrangles.

Vh set of vertices of Th.

F i
h set of interior edges.

Data given at the vertices of the mesh, (dv )v∈Vh

Problem

Given data at the nodes of Th, construct a smooth non-oscillatory
representation of the data, (dv )v∈Vh

.
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Ill-posed transport equations
Steady Hamilton Jacobi equations in L1(Ω)
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Motivation: L1 splines
C0 Finite element approach
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C0 Finite element approach

Define manifold

Xh = {φ ∈ C0(Ω); φ|K ∈ P3/Q3, ∀K ∈ Th, φ(v) = dv ,∀v ∈ Vh}.

Let α be a real positive number. Define functional

Jh(u) =
∑
K∈Th

∫
K

(|uxx |+ 2|uxy |+ |uyy |) + α
∑

F∈F i
h

∫
F
|{∂nu}|

Problem
u = argminw∈Xh

Jh(w)
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Implementation details

α = 0 or small −→ u is P1/Q1 interpolant.

α large −→ C1 smoothness.

In practice we take α = 3.

Quadrature must be rich enough (9 to 12 points).

Interior point method
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Numerical results: 16x16, 3D view
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Ill-posed transport equations
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Motivation: L1 splines
C0 Finite element approach
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Numerical results

Numerical results: 16x16, level sets L2/L1
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Numerical results: Lavery’s test case; Q1
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Numerical results: Lavery’s test case; L2
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Numerical results: Austin West DEM
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Numerical results: Barton creek; Q1
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Numerical results: Barton creek; L2
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Numerical results: The peppers
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Numerical results: The peppers; zoomed
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Numerical results: The peppers; zoomed/Photoshop CS3
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THE END
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