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The Big £; Picture

Classical 1 reconstruction problems:

min . (x)=0

mit 3.6 f(x) =0

mi + Af(x)

/ Data Fidelity:
Sparsity Model f(x) = ||®x —y]2

f(x) =e—[[®x -yl



Data without amplitude information

min x|y + Af(x)

Q:What if data provide no amplitude information on x!



Data without amplitude information

min x|y + Af(x)

Q:What if data provide no amplitude information on x!

f(ax) = af(x)

Minimizing solution is degenerate:
x=0

Impose an amplitude constraint.



Case I:
Sampling the Zero Crossings



Signal Reconstruction from Zero Crossings
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Q: Given only the zero crossings {t1,12,...,tny} of a signal
can we reconstruct it?




Signal Reconstruction from Zero Crossings
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Q: Given only the zero crossings {t1,12,...,tny} of a signal
can we reconstruct it?

x()
i P> (11,2, 0N}

Clock

Fasy implementation: only need a comparator and a clock



Logan’s Theorem
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Q: Given only the zero crossings {t1,12,...,tny} of a signal
can we reconstruct it?

Logan’s Theorem: YES. Signals bandlimited to [5,25) are
uniquely determined by their zero crossings.

BUT: an arbitrary set of zero crossings might not
correspond to a signal bandlimited to | 5,25).

Reconstruction is not robust. There is ambiguity.
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Q: Given only the zero crossings {t1,12,...,tny} of a signal
can we reconstruct it?

Logan’s Theorem: YES. Signals bandlimited to [5,25) are
uniquely determined by their zero crossings.

BUT: an arbitrary set of zero crossings might not
correspond to a signal bandlimited to | 5,25).

Reconstruction is not robust. There is ambiguity.

Introduce sparsity to resolve the ambiguity!



Signal Representation

Fourier series of x(?):

x(t) = Z ay, cos(2mnt) 4 b, sin(27nt)]
neb

Vector of coefficients:




Sampling Operator

Given {f1,12,...,IN},

~cos (2mnaty) ... cos(2mnnyoti)  osin(2rnaity) ... sin (27nnjati)
cos (2mnity) ... coS (27mN/2t2) sin (2mnits) ... sin (27mN/2t2)
Pty =
| cos (2mnity) ... cos (2mnyjetn)  sin(2mnity) ... sin (27nyjetn)

Samples the signal at those times:

Qj(tl)
(I){tk}X —




Reconstruction Problem

Qi‘(tl)
(I){tk}X — :

vt )

If 7={t1,1>,...,tn} are the zero crossings, then
the desired signal is in the nullspace of ®: &rx = 0.

Logan’s theorem=> @7 has a one-dimensional nullspace.



Signal Acquisition and Reconstruction

x(?) ,
WVPVQVW' _L—>>_) {t1,02,...,IN}

Clock




Signal Acquisition and Reconstruction

x(?) ,
W@W— _L—>>_) {t1,02,...,IN}

Clock

T={t1t2,...,.tN} Find 1-D
— Build ®r —— nullspace — X

(e.g.SVD)




Signal Acquisition and Reconstruction

x(?) ,
WWQVW' _L—>>_) {t1,02,...,IN}

Clock
T={t1t2,...,.tN} Find 1-D
— Build ®r —— nullspace — X
(e.g.SVD)

SVD(®.) In practice: noise and quantization.

1 No nullspace!
0.5 Many small singular values.
Ambiguity!

OO 200 4‘93




Sparse Reconstruction

/1 minimization:
X = arg min ||x||4
X

subject to dx =0
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/1 minimization:
X = arg min ||x||4
X
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Relaxation:

A~ . >\
X = argmin |x][1 + §\|@XH§



Sparse Reconstruction

/1 minimization:
X = arg min ||x||4
X

subject to dx =0

Relaxation:

A~ . >\
X = argmin |x][1 + §\|@XH§

Unit energy constraint:
~ A
| x|

X = argmin ||x|;
x 2

subject to ||x||2 =1




Fixed Point Equilibrium

A . )\
X = argmin x| + 7| ®x]|

subject to ||x|l =1

Unconstrained minimization:

Cost(x) = glx) + 5/(@x)
Cost'(x) = ¢'(x)+ %CID*f’(CI)X)
where;

—1 x; <C
(9'(x); =q [F1,1] zi=C(
+1 x; > C

No change if gradients are projected on unit sphere



Minimization Algorithm (based on FPC [Hale,Yin, Zhang, ‘07])

Big Picture: Gradient descent until equilibrium.

Initialization parameters: X, T
|. Compute quadratic gradient: h = ®* &X
2. Project onto sphere: h, =h — (x, h)
3. Quadratic gradient descent: X < X —7hy,

4. Shrink (/1 gradient descent):

r; <« sign(x;) max{\ffi\ — %,O}

S

: R X
5. Normalize: %

Ix]]

6. Iterate until equilibrium.



Optimization on the Sphere
~ A

| x|

X = argmin ||x|; + =
X 2
subject to ||x|l =1

Optimization is not convex.

Convergence to global optimum not guaranteed.



Optimization on the Sphere

~ . A
X = argmin ||x||; + 5

subject to ||x|l =1

| x|

Optimization is not convex.

Convergence to global optimum not guaranteed.

Exploit randomness:

e Execute L times with random initializations.
¢ Pick best solution.

If P=P(success for 1 execution), then
P(overall success)=1-(1-P)*



Probability of Success
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Further Relaxation (w/ Cinmay Hegde)

Optimization on sphere:

AN

. A
X = argm;(lonHl - §H(I)XH§

subject to ||x||2 =1

Relaxation of sphere constraint:
A1
2

~ . 2
% = argmin x|y + 25 ®x])3 + Az |[x]3 ~ 1

We can now use standard /1 algorithms!



/1 minimization formulation

- . A1 2
% = argmin x| + Z-[8x3 + o | x5 - 1]
Let:
~ X Ao :

(I) p— _ (I) _ , C =— ()\_1>

At equilibrium:

Ml T elllP
X = arg min ||x|; + 2= || ®x —
X

2 0




Reweighted FPC algorithm

Initialization parameters: X, \;, Ao

. Build &’>:_C§_,C:<

2. Estimate using FPC:

A2
A1

A1

X = arg min ||x||1 1
X

3. lterate until equilibrium.

2

;

dx —
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Case |l
|-bit Compressive Sensing



|-Bit Compressive Sensing

Q: Can we quantize measurements to |-bit:
y = sign(Px)
yi = sign((¢s, X))
and recover the signal (within a positive scaling factor)?



|-Bit Compressive Sensing

Q: Can we quantize measurements to |-bit:

y = sign(Px)
yi = sign((¢s, X))
and recover the signal (within a positive scaling factor)?

|-bit measurements are inexpensive.
Focus on bits rather than measurements.

Exact recovery is not possible.



Reconstruction from |-bit Measurements

Sign information from |-bit measurements:

y; = sign(®x); & y; - (Px); > 0

Reconstruction should enforce model.
Reconstruction should be consistent with measurements.

S

X = argmin ||x|
X

subject to y; - (Px), >0



Reconstruction from |-bit Measurements

Sign information from |-bit measurements:

y; = sign(®x); & y; - (Px); > 0

Reconstruction should enforce model.

Reconstruction should be consistent with measurements.
Reconstruction should enforce a non-trivial solution.

N

X = argmin ||x||;
X

subject to y;-(®x), >0

and Ix||o = 1



Information in |-bit Measurements




Information in |-bit Measurements
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Information in |-bit Measurements




Information in |-bit Measurements




Constraint Relaxation

S

X = argmin ||x||;
X

subject to y;- (®x). >0

and Ix||s = 1



Constraint Relaxation

S

X = argmin ||x||;
X

subject to y;- (®x). >0

and x|l =1
We relax the inequality constraints:
~ , A
% = argminx|y + 5 D7 f (v (@)
subject to ||x||2 =1

where f(x) is a one sided quadratic:
X1
2
r@={ 5 750

0O x>0




Fixed point equilibrium
~ , A
X = argmin|x|li+ 5} f(yi (Px))

subject to ||x|[2 =1

Unconstrained minimization:

Y = diag(y)
Cost(x) = g¢g(x)+ % f(Yox)
Cost'(x) = g'(z)+ %(Y(I))Tf(Y(I)X)
-1 x; <0
/ Z /(%) —x; x; <0
(¢'(x)), =< |-1,1] x; =0 and =
’ { +1 x>0 ( : ) { 0 @>0

No change if gradients are projected on unit sphere.



Minimization Algorithm

Big Picture: Gradient descent until equilibrium.

S

Initialization parameters: X, 7
|. Compute quadratic gradient: h = (Y®)" f'(Y®x)
2. Project onto sphere: h, =h — (X, h)
3. Quadratic gradient descent: X < X —7h,

4. Shrink (/1 gradient descent):

r; <« sign(x;) max{|§3\i\ — Z,O}

A

: R X
5. Normalize: © o

Ix]]

6. Iterate until equilibrium.



Reconstruction Error (N=512)
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|-bit Sampling of Images

If the signal is an image, we have more information!
(i.e., a better signal model)

Images are sparse in wavelets and positive:
x = Wa
0

and « Is sparse

|V

Lj

Incorporate better model in the reconstruction:
& = argmin ||a|1
subject to y; X (PW); > 0
and (Wa); >0

and ||alj2 =1




Original Image
4096 pixels

256 levels



Original Image
4096 pixels

256 levels
Classical Compressive Sensing, | bit per pixel
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Results

Reconstruction on unit sphere
| bit per pixel
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Results

Reconstruction on unit sphere
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Concluding Remarks

® Practical systems may eliminate amplitude information
® Reconstruction on the unit sphere is necessary
® The sphere is a well-behaved manifold

® Unit sphere constraint reduces the search space

® Several still open questions



