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The Big l1 Picture

Classical l1 reconstruction problems:

min
x
‖x‖1 s.t. f(x) = 0

min
x
‖x‖1 s.t. f(x) ≥ 0

min
x
‖x‖1 + λf(x)
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x
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x
‖x‖1 + λf(x)

Data Fidelity:
Sparsity Model f(x) = ‖Φx− y‖2

f(x) = ε− ‖Φx− y‖2



Data without amplitude information

min
x

‖x‖1 + λf(x)

Q: What if data provide no amplitude information on x?



Data without amplitude information

min
x

‖x‖1 + λf(x)

Q: What if data provide no amplitude information on x?

f(αx) = αf(x)
Minimizing solution is degenerate:

x=0
 

Impose an amplitude constraint.



Case I:
Sampling the Zero Crossings



Signal Reconstruction from Zero Crossings

Q: Given only the zero crossings {t1,t2,...,tN} of a signal
can we reconstruct it? 
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-2x(t)



Signal Reconstruction from Zero Crossings

Q: Given only the zero crossings {t1,t2,...,tN} of a signal
can we reconstruct it? 

x(t)

t1 t2 tN...

-2x(t)

Clock

{t1,t2,...,tN}
x(t)

Easy implementation: only need a comparator and a clock



Logan’s Theorem

x(t)

t1 t2 tN...

-2x(t)

Q: Given only the zero crossings {t1,t2,...,tN} of a signal
can we reconstruct it? 

Logan’s Theorem:  YES. Signals bandlimited to [B,2B) are 
uniquely determined by their zero crossings.

BUT: an arbitrary set of zero crossings might not 
correspond to a signal bandlimited to [B,2B).

Reconstruction is not robust. There is ambiguity.



Logan’s Theorem

x(t)

t1 t2 tN...

-2x(t)

Q: Given only the zero crossings {t1,t2,...,tN} of a signal
can we reconstruct it? 

Logan’s Theorem:  YES. Signals bandlimited to [B,2B) are 
uniquely determined by their zero crossings.

BUT: an arbitrary set of zero crossings might not 
correspond to a signal bandlimited to [B,2B).

Reconstruction is not robust. There is ambiguity.

Introduce sparsity to resolve the ambiguity!



Signal Representation

Fourier series of x(t):
x(t) =

∑

n∈B
[an cos(2πnt) + bn sin(2πnt)]

Vector of coefficients:

x =





an1

...
anN/2

bn1

...
bnN/2







Sampling Operator

Given {t1,t2,...,tN}, 

Φ{tk} =





cos (2πn1t1) . . . cos
(
2πnN/2t1

)
sin (2πn1t1) . . . sin

(
2πnN/2t1

)

cos (2πn1t2) . . . cos
(
2πnN/2t2

)
sin (2πn1t2) . . . sin

(
2πnN/2t2

)

...
...

...
...

cos (2πn1tN ) . . . cos
(
2πnN/2tN

)
sin (2πn1tN ) . . . sin

(
2πnN/2tN

)





Φ{tk}x =




x(t1)

...
x(tN )





Samples the signal at those times:



Reconstruction Problem

Logan’s theorem⇒ ΦT has a one-dimensional nullspace.

If T={t1,t2,...,tN} are the zero crossings, then 
the desired signal is in the nullspace of Φ:                .ΦT x = 0

Φ{tk}x =




x(t1)

...
x(tN )







Signal Acquisition and Reconstruction

Clock

{t1,t2,...,tN}
x(t)
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Clock

{t1,t2,...,tN}
x(t)

Build ΦT 
T={t1,t2,...,tN} Find 1-D 

nullspace
(e.g. SVD)

x



Signal Acquisition and Reconstruction

Clock

{t1,t2,...,tN}
x(t)

Build ΦT 
T={t1,t2,...,tN} Find 1-D 

nullspace
(e.g. SVD)

x

In practice: noise and quantization.
No nullspace!

Many small singular values.
Ambiguity!

0 200 4000
0.5
1

SVD(ΦT)



Sparse Reconstruction

1 minimization:
x̂ = arg min

x
‖x‖1

subject to Φx = 0
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x
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Sparse Reconstruction

1 minimization:
x̂ = arg min

x
‖x‖1

subject to Φx = 0

Relaxation:

x̂ = arg min
x

‖x‖1 +
λ

2
‖Φx‖2

2

Unit energy constraint:
x̂ = arg min

x
‖x‖1 +

λ

2
‖Φx‖2

2

subject to ‖x‖2 = 1



Fixed Point Equilibrium 

where:

No change if gradients are projected on unit sphere

Unconstrained minimization:

(g′(x))i =






−1 xi < 0
[−1, 1] xi = 0

+1 xi > 0

x̂ = arg min
x

‖x‖1 +
λ

2
‖Φx‖2

2

subject to ‖x‖2 = 1

Cost(x) = g(x) +
λ

2
f(Φx)

Cost′(x) = g′(x) +
λ

2
Φ∗f ′(Φx)



Minimization Algorithm (based on FPC [Hale, Yin, Zhang, ‘07])

Big Picture: Gradient descent until equilibrium.

Initialization parameters: 

1. Compute quadratic gradient:

2. Project onto sphere:

3. Quadratic gradient descent:

4. Shrink (1 gradient descent):

5. Normalize:

6. Iterate until equilibrium.

hp = h− 〈x̂,h〉

x̂← x̂− τhp

x̂i ← sign(x̂i) max
{

|x̂i|−
τ

λ
, 0

}

x̂ ← x̂
‖x̂‖

x̂, τ

h = ΦT Φx̂



Optimization on the Sphere

Optimization is not convex.

Convergence to global optimum not guaranteed.

x̂ = arg min
x

‖x‖1 +
λ

2
‖Φx‖2

2

subject to ‖x‖2 = 1



Optimization on the Sphere

Optimization is not convex.

Convergence to global optimum not guaranteed.

x̂ = arg min
x

‖x‖1 +
λ

2
‖Φx‖2

2

subject to ‖x‖2 = 1

Exploit randomness:

• Execute L times with random initializations.
• Pick best solution.

If P=P(success for 1 execution), then
P(overall success)=1-(1-P)L



Results

L=number of random initializations
N=256 coefficients

Probability of Success
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Further Relaxation (w/ Cinmay Hegde)

x̂ = arg min
x

‖x‖1 +
λ

2
‖Φx‖2

2

subject to ‖x‖2 = 1

Optimization on sphere:

Relaxation of sphere constraint:

x̂ = arg min
x
‖x‖1 +

λ1

2
‖Φx‖2

2 + λ2

∣∣‖x‖2
2 − 1

∣∣2

We can now use standard 1 algorithms!



1 minimization formulation

At equilibrium:

Let: 

x̂ = arg min
x
‖x‖1 +

λ1

2

∥∥∥∥Φ̃x−
[

c
0

]∥∥∥∥
2

2

Φ̃ =
[

cx
Φ

]
, c =

(
λ2

λ1

)2

x̂ = arg min
x
‖x‖1 +

λ1

2
‖Φx‖2

2 + λ2

∣∣‖x‖2
2 − 1

∣∣2



Reweighted FPC algorithm

Initialization parameters: 

1. Build 

2. Estimate using FPC:

3. Iterate until equilibrium.

x̂ = arg min
x
‖x‖1 +

λ1

2

∥∥∥∥Φ̃x−
[

c
0

]∥∥∥∥
2

2

x̂, λ1, λ2

Φ̃ =
[

cx̂
Φ

]
, c =

(
λ2

λ1

)2



Results

L=number of random initializations
N=256 coefficients
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Results
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Case II:
1-bit Compressive Sensing



1-Bit Compressive Sensing

Q: Can we quantize measurements to 1-bit:

y = sign(Φx)

and recover the signal (within a positive scaling factor)?
yi = sign(〈φi,x〉)



1-Bit Compressive Sensing

Q: Can we quantize measurements to 1-bit:

y = sign(Φx)

and recover the signal (within a positive scaling factor)?
yi = sign(〈φi,x〉)

1-bit measurements are inexpensive.

Focus on bits rather than measurements.

Exact recovery is not possible.



Reconstruction from 1-bit Measurements

Reconstruction should enforce model. 
Reconstruction should be consistent with measurements.

Sign information from 1-bit measurements:

yi = sign(Φx)i ⇔ yi · (Φx)i ≥ 0

x̂ = arg min
x
‖x‖1

subject to yi · (Φx)i ≥ 0



Reconstruction from 1-bit Measurements

Reconstruction should enforce model. 
Reconstruction should be consistent with measurements.

Sign information from 1-bit measurements:

yi = sign(Φx)i ⇔ yi · (Φx)i ≥ 0

x̂ = arg min
x
‖x‖1

subject to yi · (Φx)i ≥ 0
and ‖x‖2 = 1

Reconstruction should enforce a non-trivial solution.



Information in 1-bit Measurements
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Information in 1-bit Measurements



Information in 1-bit Measurements



Information in 1-bit Measurements



Information in 1-bit Measurements



Constraint Relaxation

x̂ = arg min
x
‖x‖1

subject to yi · (Φx)i ≥ 0
and ‖x‖2 = 1



Constraint Relaxation

f(x) =
{

x2 x ≤ 0
0 x > 0

We relax the inequality constraints:

where f(x) is a one sided quadratic:

x̂ = arg min
x

‖x‖1 +
λ

2

∑

i

f (yi · (Φx))

subject to ‖x‖2 = 1

λ ↑

x̂ = arg min
x
‖x‖1

subject to yi · (Φx)i ≥ 0
and ‖x‖2 = 1



Fixed point equilibrium 

Y ≡ diag(y)

Cost(x) = g(x) +
λ

2
f(YΦx)

Cost′(x) = g′(x) +
λ

2
(YΦ)T f(YΦx)

(g′(x))i =






−1 xi < 0
[−1, 1] xi = 0

+1 xi > 0
and

(
f ′(x)

2

)

i

=
{
−xi xi ≤ 0

0 xi > 0

No change if gradients are projected on unit sphere.

Unconstrained minimization:

x̂ = arg min
x

‖x‖1 +
λ

2

∑

i

f (yi · (Φx))

subject to ‖x‖2 = 1



Minimization Algorithm

Big Picture: Gradient descent until equilibrium.

Initialization parameters: 

1. Compute quadratic gradient:

2. Project onto sphere:

3. Quadratic gradient descent:

4. Shrink (1 gradient descent):

5. Normalize:

6. Iterate until equilibrium.

h = (YΦ)T f ′(YΦx)

hp = h− 〈x̂,h〉

x̂← x̂− τhp

x̂i ← sign(x̂i) max
{

|x̂i|−
τ

λ
, 0

}

x̂ ← x̂
‖x̂‖

x̂, τ



Results
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Reconstruction Error (N=512)



1-bit Sampling of Images

If the signal is an image,  we have more information!
(i.e., a better signal model)

Images are sparse in wavelets and positive:
x = Wα

xi ≥ 0
and α is sparse

Incorporate better model in the reconstruction:
α̂ = arg min

α
‖α‖1

subject to yi × (ΦW)i ≥ 0
and (Wα)i ≥ 0
and ‖α‖2 = 1
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4096 pixels
256 levels
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Original Image
4096 pixels
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4096 measurements
1 bit per measurement
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Results

Original Image
4096 pixels
256 levels

4096 measurements
1 bit per measurement

4096 bits (1 bit per pixel)

512 measurements
8 bits per measurement

Reconstruction on unit sphere

512 measurements
1 bit per measurement

512 bits (0.125 bits per pixel)

Reconstruction on unit sphereClassical Compressive Sensing



Concluding Remarks

• Practical systems may eliminate amplitude information

• Reconstruction on the unit sphere is necessary

• The sphere is a well-behaved manifold

• Unit sphere constraint reduces the search space

• Several still open questions


