
COMMUN. MATH. SCI. c© 2015 International Press

Vol. 13, No. 8, pp. 2177–2194

CENTRAL SCHEMES FOR MEAN FIELD GAMES∗

BOJAN POPOV† AND VLADIMIR TOMOV‡

Abstract. Mean field type models have been recently introduced and analyzed by Lasry and
Lions. They describe a limiting behavior of stochastic differential games as the number of players tends
to infinity. Numerical methods for the approximation of such models have been developed by Achdou,
Camilli, Capuzzo-Dolcetta, Gueant, and others. Efficient algorithms for such problems require special
efforts and so far all methods introduced have been first order accurate. In this manuscript we design
a second order accurate numerical method for time dependent Mean Field Games. The discretization
is based on central schemes which are widely used in hyperbolic conservation laws.

Key words. mean field games, central schemes.

AMS subject classifications. 65M06, 65M12, 65H10.

1. Introduction
The Mean Field Games (MFG) equations describe situations that arise in economics,

finance or other related subjects where a large number of individual players choose their
optimal strategy by considering global (but limited) cost information that is available to
everyone. As time evolves, each player’s actions alters the cost information which leads
to changes in the players’ strategies. The mathematical model of such problems has first
been introduced by Lions and Lasry in [13], and in one space dimension corresponds to
the following system of equations:

∂u

∂t
+H

(
∂u

∂x

)
=f(x,m)+σ

∂2u

∂2x
, (1.1)

∂m

∂t
+
∂

∂x

[
H ′
(
∂u

∂x

)
m

]
=−σ∂

2m

∂2x
, (1.2)

u(x,0) =u0(x), m(x,T ) =mT (x), m>0,

∫
Ω

m dx= 1 for all t∈ [0,T ],

where m is a distribution of players, u is a cost function, and σ is a volatility factor.
Equation (1.1) is a forward Hamilton–Jacobi (FHJ) equation for u with a Hamiltonian
H, a source f and a diffusion term. The source f(x,m) describes how the players’
actions affect the cost information. Equation (1.2) is a backward convection-diffusion
(BCD) equation for m with a diffusion term. The advection term H ′

(
∂u
∂x

)
m describes

how the cost function influences each player’s actions.
There are already many numerical methods developed to solve the MFG system

(1.1)–(1.2), see [3, 1, 7, 4, 12]. The main goal so far has been to find a stable and
convergent discretization of the MFG model. This is usually done via monotone dis-
cretizations of the Hamiltonian in (1.1), a suitable weak formulation of (1.2) and some
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implicit coupling to guarantee existence, uniqueness of the discrete solution, and con-
vergence towards the exact solution of the system. However, it is well known that using
monotone methods results in at most first order accurate approximate solutions. To the
best of our knowledge, the construction and the convergence analysis of a second order
accurate method for the MFG system is an open problem.

Central schemes are the standard tool for numerical approximation of hyperbolic
conservation equations, the first such scheme was introduced by Lax in [14] and the first
second order extension was given by Nessyahu and Tadmor in [19]. Their main feature is
simplicity since they don’t involve Riemann solvers, and their structure allows efficient
parallelization. Utilizing these schemes for general convection-diffusion equations is
straightforward, and by exploiting the general Hamilton–Jacobi equations’ relation to
conservation laws, see for example [5, 6], we can apply central schemes to those equations
as well.

The main idea of this work is to modify and apply the existing explicit second
order central schemes to each individual MFG equation and then to combine them into
a fixed point iteration algorithm for the MFG system. The analysis of second order
central schemes for transport and Hamilton–Jacobi equations is not a simple task, see
for example [16, 18, 20]. At this point we do not have a convergence result for our new
scheme for the MFG system. This paper is organized as follows:

• We derive a fully discrete explicit second order staggered finite difference scheme
for the FHJ Equation (1.1) in Section 2. The algorithm we propose is a modi-
fication of the method derived by Lin and Tadmor in [17].

• We derive a fully discrete explicit second order staggered finite difference scheme
for the BCD Equation (1.2) in Section 3. The scheme is based on the classical
Nessyahu–Tadmor scheme from [19].

• Both of our schemes are combined into a fixed point iteration algorithm that
solves the MFG equations in Section 4. We also describe how the two schemes
interact in time, memory issues, and stopping criteria.

• Numerical results, convergence, and computational speed tests are presented in
Section 5.

• We compare our approach to some already existing MFG numerical algorithms
in Section 6.

2. Discretization of the forward Hamilton–Jacobi equation

Hamilton–Jacobi equations are closely related to conservation laws. If we consider
the two equations:

∂u

∂t
+H

(
∂u

∂x

)
= 0, u(x,t) =u0(x) and (2.1)

∂ϕ

∂t
+
∂F (ϕ)

∂x
= 0, ϕ(x,0) =ϕ0(x), (2.2)

then u(x,t) is the unique physical solution (called viscosity solution) of (2.1) if and
only if ϕ(x,t) = ∂

∂xu(x,t) is the unique physical solution (called entropy solution) of

the conservation law (2.2) with flux F (ϕ) =H
(
∂u
∂x

)
and initial condition ϕ0(x) =u0(x).

Details about this relation can be found in [5], and extension to multiple dimensions
through numerical observations is given in [10]. Using this idea, schemes that are
initially created for conservation laws can be applied to Hamilton–Jacobi equations,
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e.g., [11, 17, 21, 16, 9]. In this section we use the same approach and derive a modified
version of the scheme presented in [17] which is suitable for the FHJ Equation (1.1).

We discretize our domain Ω by the grid points xj = j∆x. The discrete points in time
are tn =n∆thj , where ∆thj stands for the time step for the FHJ Equation (1.1). Note
that here we march forward in time. Let unj be the approximate value of u(xj ,tn). We
think of our discrete approximation u(·,tn) as a continuous, piecewise quadratic function
with values unj at the grid points xj . Its first and second order spatial derivatives are
defined as follows:

(ûx)nj+ 1
2

:=
unj+1−unj

∆x
, (2.3)

(ûxx)nj+ 1
2

:=
1

∆x
minmod

[
θ
(

(ûx)nj+ 3
2
−(ûx)nj+ 1

2

)
,

1

2

(
(ûx)nj+ 3

2
−(ûx)nj− 1

2

)
,

θ
(

(ûx)nj+ 1
2
−(ûx)nj− 1

2

)]
,

(2.4)

where “minmod” is the well known nonlinear limiter:

minmod(a1,a2,. ..) :=


minj(aj), if aj>0 ∀j,
maxj(aj), if aj<0 ∀j,
0 otherwise.

(2.5)

The parameter θ in (2.4) must be in [1,2] in order to prevent oscillations, larger values
introduce less dissipation, i.e., θ= 2 (which is our choice here) is the least dissipative
pick, see [22, 15]. Then for x∈ [xj ,xj+1] we define the discrete interpolant

û(x,tn) :=unj +(ûx)nj+ 1
2
(x−xj)+

1

2
(ûxx)nj+ 1

2
(x−xj)(x−xj+1). (2.6)

As further explained in Section 3, let m̂(x,t) be the approximation of m(x,t) and
mn

j+ 1
2

,(m̂x)n
j+ 1

2

be the value and first spatial derivative of m̂(xj+ 1
2
,tn). Suppose we

already have the values unj , then the next staggered values in time are derived by inte-
grating (1.1) over [tn,tn+1] and evaluating at xj+ 1

2
:

un+1
j+ 1

2

=û(xj+ 1
2
,tn)

+

∫ tn+1

tn

(
−H(ûx(xj+ 1

2
,t))+f(xj+ 1

2
,m̂(xj+ 1

2
,t))+σûxx(xj+ 1

2
,t)

)
dt. (2.7)

At this point, in order to get values of ûx in the time interval (tn,tn+1), we use the
relation of our FHJ problem to conservation laws (2.2), namely in our case ûx satisfies
the conservation law

∂

∂t
(ûx)+

∂

∂x
H(ûx) =

∂

∂x
f(x,m̂)+O(∆x2). (2.8)

Here we have ignored the diffusion term, because the error from doing that does not
affect the second order accuracy of the scheme, see Subsection A.1. Equation (2.8) has
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finite propagation speed, which means that under a standard hyperbolic CFL condition
on the time step

∆thj
∆x

max
x
|H ′(ûx)|≤ 1

2
, (2.9)

our interpolant’s spatial derivatives ûx,ûxx are expected to remain well-defined around
xj+ 1

2
for t∈ [tn,tn+1]. Then we can use a quadrature rule for the integral in (2.7).

We use the midpoint rule where the midpoint values in time are computed by Taylor
expansion of ûx that uses the time derivative from Equation (2.8). Namely, we define

(ûx)
n+ 1

2

j+ 1
2

=(ûx)nj+ 1
2

+
∆thj

2

[
−H ′

(
(ûx)nj+ 1

2

)
(ûxx)nj+ 1

2

+fx(xj+ 1
2
,mn

j+ 1
2
)+fm(xj+ 1

2
,mn

j+ 1
2
)(m̂x)nj+ 1

2

]
. (2.10)

The above expansion is only done up to first derivative because this is sufficient to
provide the desired accuracy, see Subsection A.2. After we apply the midpoint rule
in (2.7) and substitute (2.10), (2.6) into (2.7), we get the following forward staggered
scheme for the FHJ Equation (1.1):

un+1
j+ 1

2

=
1

2

(
unj +unj+1

)
− (∆x)2

8
(ûxx)nj+ 1

2

+∆thj

[
−H

(
(ûx)

n+ 1
2

j+ 1
2

)
+f(xj+ 1

2
,m

n+ 1
2

j+ 1
2

)+σ
(ûx)n

j+ 3
2

−(ûx)n
j− 1

2

2∆x

]
(2.11)

where for the σ term instead of using (ûxx)
n+ 1

2

j+ 1
2

computed by (2.4) at tn+ 1
2

(which

requires a lot of operations), we apply a simple central difference at time tn for the
second derivative. This approach provides reduction of the computational cost and is
sufficient to achieve second order accurate discretization (see Subsection A.1).

The time step ∆thj = tn+1− tn for this scheme must take into account not only the
hyperbolic CFL condition (2.9), but also the presence of the Laplace term, namely

∆thj := min

 c∆x

maxj

∣∣∣H ′((ûx)n
j+ 1

2

)∣∣∣ , c(∆x)2

σ

 , (2.12)

where c is a CFL constant, we usually use 0.4. The term involving σ is derived from
positivity preservation: if we suppose f =H= ûxx = 0 and unj ≥0 ∀j in (2.11), then we

enforce un+1
j+ 1

2

≥0 by

1

2

(
unj +unj+1

)
−σ ∆t

2∆x2

(
unj +unj+1

)
≥0, ∀j⇒∆t≤ ∆x2

σ
.

The expression (2.12) is recomputed before each time step, because the dependence of
(2.8) on m̂ causes changes in the local maximum of H ′.

Remark 2.1. Depending on σ, in (2.12) we may have ∆t=O(∆x) or ∆t=O(∆x2).
We say that our simulation is in ‘hyperbolic regime” when ∆t=O(∆x), and we say that
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our simulation is in “parabolic regime” when ∆t=O(∆x2). In a hyperbolic regime we
have σ=O(∆x), but in a parabolic regime we have σ=O(1).

Remark 2.2. We can define a simpler version of (2.11) by choosing continuous, piece-
wise linear approximation with values unj at the grid points xj . This corresponds to
the choice (ûxx)n

j+ 1
2

= 0, instead of the definition (2.4). Then we can apply the above

derivation by using a left-point rule for the integral in Equation (2.7) and obtain the
scheme

un+1
j+ 1

2

=
1

2

(
unj +unj+1

)
+∆thj

[
−H

(
(ûx)nj+ 1

2

)
+f(xj+ 1

2
,mn

j+ 1
2
)+σ

(ûx)n
j+ 3

2

−(ûx)n
j− 1

2

2∆x

]
. (2.13)

This scheme uses the same time step computation as in (2.12), and requires much less
operations than (2.11). However, as derived later and verified numerically, the scheme
(2.13) does not produce second order convergent method.

Remark 2.3. To guarantee second order accuracy in the parabolic regime, it is
necessary to use the minmod limiter (2.4) with θ= 2, or the UNO limiter in (2.11)
(see Equation (3.1) for definition). The derivation of the truncation error is given in
Subsection A.2.

3. Discretization of the backward convection-diffusion equation

In this section we derive a modification of the central scheme presented in [19] to
discretize the BCD Equation (1.2). We use the same spatial grid points xj = j∆x as in
Section 2. However, the discrete points in time are different. We consider tk =k∆tcd
where ∆tcd stands for the time step for the BCD Equation (1.2). Note that in this
algorithm we march backwards in time. We think of our discrete approximation as a
piecewise linear function m̂ where mn

j+ 1
2

is its average value for the cell [xj ,xj+1] (or

the value at xj+ 1
2
). The spatial derivative (m̂X)j+ 1

2
at xj+ 1

2
is constructed using the

uniformly non-oscillatory (UNO) flux limiter introduced in [8]:

(m̂X)kj+ 1
2

:=
1

∆x
minmod

(
mk

j+ 1
2
−mk

j− 1
2

+
1

2
minmod(∆2mk

j− 1
2
,∆2mk

j+ 1
2
),

mk
j+ 3

2
−mk

j− 1
2
− 1

2
minmod(∆2mk

j+ 1
2
,∆2mk

j+ 3
2
)

)
, (3.1)

∆2mk
j+ 1

2
:=mk

j+ 3
2
−2mk

j+ 1
2

+mk
j− 1

2
,

and sometimes we use the minmod limiter that doesn’t need as many values, namely

(m̂x)kj+ 1
2

:=
1

∆x
minmod

(
mk

j+ 1
2
−mk

j− 1
2
,mk

j+ 3
2
−mk

j+ 1
2

)
. (3.2)

Then for x∈ [xj ,xj+1] the approximation function m̂ has the form

m̂(x,tk) =mk
j+ 1

2
+

1

∆x
(x−xj+ 1

2
)(m̂X)kj+ 1

2
. (3.3)
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Suppose we already have the values mk
j+ 1

2

, then the next staggered values in time, going

backwards, are obtained by integrating (1.2) over [tk,tk−1] and [xj+ 1
2
,xj+ 3

2
]:∫ x

j+3
2

x
j+1

2

m̂(x,tk−1)−m̂(x,tk) dx

+

∫ tk−1

tk

[
H ′(ûx(xj+ 3

2
,t))m̂(xj+ 3

2
,t)−H ′(ûx(xj+ 1

2
,t))m̂(xj+ 1

2
,t)

]
dt

=−σ
∫ tk−1

tk

m̂X(xj+ 3
2
,t)−m̂X(xj+ 1

2
,t) dt. (3.4)

Similar to Section 2, the BCD Equation (1.2) has a finite speed of propagation, hence
with the standard hyperbolic CFL condition on the time step

∆tcd
∆x

max
x
|H ′(ûx)|≤ 1

2
, (3.5)

the value of m̂ and its spatial derivative m̂x remain well-defined around xj+ 1
2

for t∈
[tn−1,tn]. Then we can safely use a quadrature rule for the time integrals in (3.4).
We use the midpoint rule where the midpoint values in time are computed by Taylor
expansion of m̂ that uses the time derivative from Equation (1.2), namely we define

m
k− 1

2

j+ 1
2

=mk
j+ 1

2
+

∆tcd
2

[
H ′′
(

(ûx)kj+ 1
2

)
(ûxx)kj+ 1

2
mk

j+ 1
2

+H ′
(

(ûx)kj+ 1
2

)
(m̂x)kj+ 1

2

]
, (3.6)

where we ignore the diffusion term and use the less accurate approximation m̂x instead
of m̂X without affecting the method’s second order accuracy, see Subsection A.3. After
we apply the midpoint rule and substitute (3.6) for the time integrals of (3.4), and use
(3.3) for the space integral of (3.4), we get the following backward staggered scheme for
the BCD Equation (1.2):

mk−1
j+1 =

1

2

(
mk

j+ 1
2

+mk
j+ 3

2

)
−∆x

8

(
(m̂X)kj+ 3

2
−(m̂X)kj+ 1

2

)
+∆tcd

(
H ′
(

(ûx)
k− 1

2

j+ 3
2

)
m

k− 1
2

j+ 3
2

−H ′
(

(ûx)
k− 1

2

j+ 1
2

)
m

k− 1
2

j+ 1
2

∆x

+σ
mk

j+ 5
2

−mk
j+ 3

2

−mk
j+ 1

2

+mk
j− 1

2

2∆x2

)
, (3.7)

where mk−1
j+1 is the average for the staggered cell [xj+ 1

2
,xj+ 3

2
], and the exact computation

of (ûx)
k− 1

2

j+ 3
2

,(ûx)
k− 1

2

j+ 1
2

is given in Subsection 4.1. Similar to the approach in (2.11), for

the σ term instead of using the difference between the midpoint values (m̂X)
k− 1

2

j+ 3
2

and

(m̂X)
k− 1

2

j+ 1
2

, we apply a standard central difference at time tk. Doing this allows us to

reduce computational cost while maintaining second order accuracy, see Subsection A.3.
The time step ∆tcd = tk− tk−1 for this scheme must take into account not only the

hyperbolic CFL condition (3.5), but also the presence of the Laplace term:

∆tcd := min

 c∆x

maxj

∣∣∣H ′((ûx)k
j+ 1

2

)∣∣∣ , c(∆x)2

σ

, (3.8)
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where the derivation of the term involving σ and the CFL constant c are the same as
in (2.12). This expression is recomputed before each time step, because the maximum
of H ′ changes.

Remark 3.1. The scheme (3.7) preserves initial mass (up to contributions from the
boundary). If the mass at time tk is

Mk =

n−1∑
j=0

mk
j+ 1

2
,

then the mass at time tk−1 is obtained by summing (3.7) over all j= 0...n−1:

Mk−1 =Mk−
1

2
mk

1
2

+
1

2
mk

n+ 1
2
−∆x

8

(
(m̂X)kn+ 1

2
−(m̂X)k1

2

)
+∆tcd

(
H ′
(

(ûx)
k− 1

2

n+ 1
2

)
m

k− 1
2

n+ 1
2

−H ′
(

(ûx)
k− 1

2
1
2

)
m

k− 1
2

1
2

∆x

+σ
mk

n+ 3
2

−mk
n− 1

2

−mk
3
2

+mk
− 1

2

2∆x2

)
.

We see that the mass may change due to a limited number of boundary terms. These
terms cancel each other for the case of periodic boundary conditions (i.e., mn+p+ 1

2
=

mp+ 1
2
,un+p =up for any integer p). However for any other type of boundary conditions

(Dirichlet, constant extensions, etc.) the preservation of total mass is true only on
continuous level. For such cases the mass error decreases under mesh refinement with
linear rate.

Remark 3.2. We can define a simpler version of (3.7) by choosing a piecewise
constant function m̂ where mk

j+ 1
2

is its value at xj+ 1
2
. This corresponds to the choice

(m̂X)k
j+ 1

2

= (m̂x)k
j+ 1

2

= 0, instead of the definitions (3.1) and (3.2). Then we can apply

the above derivation by using a left-point rule for the integral in Equation (3.4) and
obtain the scheme

mk−1
j+1 =

1

2

(
mk

j+ 1
2

+mk
j+ 3

2

)
+∆tcd

(
H ′
(

(ûx)k
j+ 3

2

)
mk

j+ 3
2

−H ′
(

(ûx)k
j+ 1

2

)
mk

j+ 1
2

∆x

+σ
mk

j+ 5
2

−mk
j+ 3

2

−mk
j+ 1

2

+mk
j− 1

2

2∆x2

)
. (3.9)

This scheme uses the same time step computation as in (3.8), and requires much less
operations than (3.7). However, as derived later and verified numerically, the scheme
(3.9) does not produce second order convergent method.

Remark 3.3. To guarantee second order accuracy in the parabolic regime, it is
necessary to use the UNO limiter (3.1) or the minmod limiter (2.4) with θ= 2 in (3.7).
The derivation of the truncation error is given in Subsection A.3. Using a clipping type
limiter such as standard minmod (θ= 1 in (2.4)) will result in loss a of accuracy in the
regions of local extrema and in the parabolic case this will deteriorate the performance
of the method from second to first order.
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4. Fixed point iteration
In this section we combine the two presented algorithms into a fixed point iteration.

4.1. Interaction between the equations. First we explain how the schemes
(2.11), (3.7) obtain values in time from each other. Let us suppose that we know the
values mk

j+ 1
2

,mk−2
j+ 1

2

for all j where tk≥ tn≥ tk−2. Looking at the forward scheme (2.10),

(2.11), we use a second order interpolation in time:

mn
j+ 1

2
:=mk−2

j+ 1
2

+
mk

j+ 1
2

−mk−2
j+ 1

2

tk− tk−2
(tn− tk−2). (4.1)

It’s important to note that the values used in (4.1) have the same cell staggering.
Namely, the values mk

j+ 1
2

,mk−2
j+ 1

2

are defined at all points xj+ 1
2
, while the values mk−1

j+ 1
2

are

undefined, because evolution from m̂(x,tk) to m̂(x,tk−1) by (3.7) would define the values
of m̂(x,tk−1) only at the grid points xj . The derivative (m̂x)nj in (2.10) is computed by

combining (4.1) and (3.1), and the value m
n+ 1

2

j+ 1
2

in (2.11) is computed by applying (4.1)

at time tn+ 1
2
.

The same approach is used when we consider the backward scheme (3.6), (3.7):
suppose we know the values un

j+ 1
2

,un+2
j+ 1

2

for all j where tn+2≥ tk≥ tn. Then uk
j+ 1

2

is

defined by

ukj+ 1
2

:=unj+ 1
2

+
un+2
j+ 1

2

−un
j+ 1

2

tn+2− tn
(tk− tn). (4.2)

Again, note that the values used in (4.2) have the same cell staggering: the values
un+2
j+ 1

2

,un
j+ 1

2

are defined at all points xj+ 1
2
, while the values un+1

j+ 1
2

are undefined, because

evolution from û(x,tn) to û(x,tn+1) by (2.11) would define the values of û(x,tn+1) only
at the grid points xj . The derivatives (ûx)k

j+ 1
2

,(ûxx)k
j+ 1

2

in (3.6), (3.8) are computed by

combining (4.2), (2.3) and (2.4), and the ones in (3.7) are obtained by applying (4.2)
at tk− 1

2
and (2.3).

4.2. Difference norms. In order to use a fixed point iteration, we need to define
suitable norms for measuring difference between consecutive solutions. We motivate our
choice by some theoretical results from [13]. The solution of (1.1), (1.2) is unique, if f
is monotone in L2 and H is strictly convex i.e.,∫

Ω

(f(x,m1)−f(x,m2))(m1−m2) dx≥0, ∀m1,∀m2,

H(p+q)−H(p)−H ′(p)q≥0, ∀p,q∈R, equality implies q= 0.

and under additional assumptions on H, f and u0, there exist smooth or weak solutions.
Then for σ→0 there exists a unique solution s.t. u is Lipschitz and m is a probability
measure. Therefore, we use the L∞ norm for û and the following negative norm for m̂:

||m̂i+1(x,t)−m̂i(x,t)||∗=

∫
Ω

∣∣∣∣∫ x

0

(m̂i+1(s,t)−m̂i(s,t))ds

∣∣∣∣dx, (4.3)

where m̂i(x,t),ûi(x,t) are the solutions obtained after the i-th iteration.

Remark 4.1. The proof for uniqueness of (1.1), (1.2) from [13] can be modified for
the case where −f is monotone in L2 and −H is strictly convex. This is the setting for
all numerical tests we present in Section 5.
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4.3. Final algorithm. We are ready to state the complete algorithm:

1. m̂0(x,t) is initialized by the values of mT (x) at every point xj+ 1
2
, let i= 0.

2. ûi+1(x,t) is computed by the algorithm from Section 2 using m̂i(x,t).

3. m̂i+1(x,t) is computed by the algorithm from Section 3 using ûi+1(x,t).

4. if convergence is achieved, namely

||m̂i+1(x,0)−m̂i(x,0)||∗<ε and ||ûi+1(x,T )− ûi(x,T )||∞<ε,

then we stop, the solution is m̂i+1,ûi+1. Otherwise i= i+1, go to 2.

The tolerance we usually use is ε= 10−6. Notice that the algorithm is fully explicit
and it doesn’t involve any matrix computations. In all numerical tests presented in
Section 5 the number of iterations used remains bounded by a constant.

4.4. Memory usage. The memory problem is the following: values computed
from steps 2 and 3 must be kept in memory in order to be used for the next iteration of
the other equation (the values obtained in step 2 are used in step 3 and vice versa). If
our time steps are in the parabolic regime, meaning ∆thj ,∆tcd =O(∆x2), and we store
all values in time, then the space-time memory consumption would be O(∆x−3). If the
time steps are in hyperbolic regime, meaning ∆thj ,∆tcd =O(∆x), the problem doesn’t
exist, because the space-time consumption is the standard O(∆x−2).

We notice that values of m̂ used in the FHJ scheme (2.11) and values of û used in
the BCD scheme (3.7) are already scaled in a sense by ∆t. Since our goal is to achieve
O(∆x2) convergence rates, then in parabolic regime it is sufficient to provide accuracy of
order O(∆t) for these interpolated values, because this would give LTE of order O(∆t2)
or GTE of order O(∆t) =O(∆x2). This means that storing only O(∆x−1) instead of
O(∆t−1) values in time, and interpolating for the intermediate times when needed, will
preserve the second order accuracy of the method and keep the space-time memory
consumption to O(∆x−2). Our implementation always stores O(∆x−1) values in time
for any O(∆x)≤σ≤O(1) and the resulting method remains second order accurate.

5. Numerical tests

In this section we first show results that are in agreement with the 1D results
obtained in [7]. Then we test the convergence properties of the algorithm on a manu-
factured smooth test case. In the last subsection we demonstrate some computational
features of our algorithm. For all tests our CFL constant is c= 0.4.

5.1. Test Problem 1. We first examine a test case presented in [7]: it models
a maximization problem, i.e., the players are trying to maximize the utility function u.
The players see increasing utility in the middle of the domain, but at the same time
they prefer to be away from other players:

f(x,m) =−16

(
x− 1

2

)2

−0.1max(0,min(5,m)), H

(
∂u

∂x

)
=−1

2

(
∂u

∂x

)2

,

m0(x) =
1.0

1.1

[
1.0+0.2cos

(
π

(
2x− 3

2

))2
]
, uT (x) = 0.0.

Notice that the system discussed in [7] is forward in time with respect tom and backward
with respect to u. In order to simulate the same test case, but with reversed time, we
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solve the form (1.1), (1.2) by taking the same expressions for f and H, but we switch
the initial and final conditions:

mT (x) =
1.0

1.1

[
1.0+0.2cos

(
π

(
2x− 3

2

))2
]
, u0(x) = 0.0.

The domain is [0,1], the volatility is σ= 0.5, the final time is T = 0.5 and the boundary
conditions are ∂u

∂x = ∂m
∂x = 0 on both ends. Since in this example σ is big compared to

∆x, we optimize memory usage by saving the solutions of m̂,û for only 800 time steps
(out of 100 000 steps). In Figure 5.1 we show the distribution of players m at final and
initial times. In Figure 5.2 we show the cost function u and its gradient ∂u

∂x at the final
time. The result is computed on 400 cells, the fixed point iteration converges on the
fifth loop. We observe that our results are in agreement with the ones in [7].

For this problem’s boundary conditions our algorithm preserves mass only on a
continuous level. The difference between initial and final mass converges to zero linearly
under refinement. For the presented simulation on 400 cells the difference is 9.85E−3.

Fig. 5.1. Plot of mT (x) (on the left side) and the solution m(x,0.0) (on the right side) computed
on 400 cells for Test Problem 1.

5.2. Test Problem 2. The purpose of this example is to verify the method’s
ability to obtain second order convergence rate for a smooth problem. We use a similar
setup as in Test Problem 1, but we initialize mT (x) by a C1 function with compact
support:

mT (x) =

{
4.0sin2

(
2π
(
x− 1

4

))
x∈ [ 1

4 ,
3
4 ],

0 otherwise.

and we keep u smooth by using a similar source:

u0(x) = 0.0, f(x,m) = 3.0mT (x)−min(4.0,m), H

(
∂u

∂x

)
=−1

2

(
∂u

∂x

)2

.

The domain is (0,1), the volatility is σ= 0.05 and in order to keep the solution smooth
enough we use a final time T = 0.05. We compute convergence speed by considering
a reference solution calculated using 3000 cells in space. Each simulation optimizes
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Fig. 5.2. Solution for u (on the left side) and ∂u
∂x

(on the right side) computed on 400 cells for
Test Problem 1.

memory usage by storing only ∆x−1 solutions in time. In Figure 5.3 we show the
distributions of players m at final and initial times. In Figure 5.4 we show the cost
functions u and their gradients ux at the final time. In Table 5.1 we show convergence
speeds for the L∞ and L1 norms, and mass preservation. The presented norms are
computed by dividing the domain in 10 000 cells, comparing the end points of each cell
to obtain the L∞ norm, and applying a 3-point Gauss quadrature rule in each cell to
obtain the L1 norm and the mass. We observe the expected second order in L∞ and L1,
and the linear dissipation of the mass error. The mass error for the reference solution
is 3.28E-9.

Fig. 5.3. Plot of mT (x) (on the left side) and the solution m(x,0.0) (on the right side) computed
on 40 and 3000 cells for Test Problem 2.

5.3. Strong scaling test. Both schemes (2.11), (3.7) admit easy parallelization.
Our algorithm is developed on C++ with OpenMP threads. In this section we report
execution times and perform a strong scaling test.

The problem we consider is Test Problem 2 on 6000 cells with all other parameters
as in Subsection 5.2. We make one iteration of both schemes (2.11), (3.7) that consists
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Fig. 5.4. Solution for u (on the left side) and ∂u
∂x

(on the right side) computed on 40 and 3000
cells for Test Problem 2.

m errors u errors

cells L∞ rate L1 rate L∞ rate L1 rate mass error rate
40 2.75E-1 1.74E-2 3.43E-3 9.40E-4 3.74E-7
80 6.66E-2 2.05 4.28E-3 2.02 7.93E-4 2.11 2.51E-4 1.90 1.47E-7 1.34
160 1.64E-2 2.01 1.04E-3 2.04 1.98E-4 1.99 6.42E-5 1.97 6.29E-8 1.22
320 4.13E-3 1.99 2.57E-4 2.01 4.96E-5 2.00 1.60E-5 2.00 3.03E-8 1.05
640 1.01E-3 2.03 6.34E-5 2.02 1.25E-5 1.97 3.90E-6 2.04 1.52E-8 0.99
1280 2.41E-4 2.06 1.47E-5 2.10 3.43E-6 1.87 8.94E-7 2.12 7.66E-9 0.98

Table 5.1. L∞ and L1 errors, differences between initial and final mass, and convergence rates
with respect to a reference solution computed on 3000 cells for Test Problem 2.

of 112 500 time steps for each equation. The machine we use is an AMD Opteron 6174,
2.2 Ghz with 48 total cores. The execution times and the scaling result are displayed on
Figure 5.5. We observe that linear scaling is achieved when we have at least 500 cells
per processor. Since the parallelism is in space and not in time, our code is faster for
cases when the ratio between cells in space versus steps in time is bigger i.e., for smaller
values of σ.

Fig. 5.5. Strong scaling test on 6000 cells for Test Problem 2.
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6. Related work

In this section we describe some already existing algorithms related to the MFG
equations (1.1), (1.2).

In [3], Achdou and Capuzzo-Dolcetta propose implicit finite difference methods
for the stationary case, the time-dependent case where both MFG equations progress
forward in time, and the case of (1.1), (1.2). The authors present detailed proofs of ex-
istence and uniqueness for the discrete problems, and provide bounds on the solutions.
The paper contains results of numerical simulations for 2-dimensional test cases where
both equations go forward in time. The simulations make use of a long time approxi-
mation strategy of the stationary problem. The tests confirm that the used approach is
robust when σ→0, and the results suggest linear convergence, i.e., the scheme is only
first order accurate.

In [1], Achdou, Camilli, and Capuzzo-Dolcetta study the mean field planning prob-
lem (MFGP), which puts an initial condition on m(x,0) instead of the one on u(x,0),
and the penalized mean field planning problem (MFGPP), which is in the same form
as (1.1), (1.2). The authors present semi-implicit finite difference schemes and prove
existence and uniqueness of the solution by exploiting a connection between the discrete
formulations and a minimization problem. Results for the MFGP discrete equations are
obtained by solving the MFGPP discrete equations and passing to the limit of a pe-
nalization parameter. The forward-backward MFGPP finite difference scheme is solved
by a Newton method. The presented numerical results show correct behavior for small
σ and first order convergence. The Newton method convergence is slower for smaller
values of σ.

In [7], Gueant examines the MFG equations (1.1), (1.2) for the special case of
H(ux) =u2

x/2. The author uses a change of variables which produces two coupled heat
equations with source terms. Under some assumptions on f(x,m), existence and unique-
ness of weak solutions for the new system are proved. Each equation is approximated
in space-time, so that mT (x),u0(x) appear as boundary conditions, by implicit finite
difference schemes. The author proves existence and uniqueness for both schemes. The
discrete equations are solved recursively until fixed point is reached, a Newton method
is applied inside each step. The presented numerical results show first order convergence
and increasing number of Newton iterations for smaller values of σ.

Alternative to these methods and to our approach here can be found in [4, 12] but
these methods also seem to be first order accurate. Convergence results for the schemes
in [3, 1] are provided by their authors in [2].

7. Conclusion

We have presented a parallel fixed point iteration algorithm that combines a sec-
ond order scheme for the forward Hamilton–Jacobi Equation (1.1), and a second order
scheme for the backward convection-diffusion Equation (1.2). The second order accu-
racy of the method is confirmed numerically, and our numerical results agree with the
already existing data in the field. Both schemes are explicit, which means that in a
parabolic regime we have ∆t=O(∆x2). This results in a high number of time steps,
however the schemes’ simplicity and the method’s parallel ability allow us to use highly
refined meshes. We have also eliminated the memory problems arising from the combi-
nation of explicit time stepping and forward-backward coupling of the equations. The
main drawback of our method is that the structure of the original system is somewhat
lost in the discrete method, making it hard to prove uniqueness, stability and con-
vergence of the fixed point iteration. However, we achieve (numerically) second order
accuracy which makes the method more cost efficient.
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This work can be extended by introducing 2D algorithms that use the same central
schemes approach. This will result in more computations inside a single time step,
hence it will exploit better the parallel abilities of our numerical method. We expect to
achieve similar run times as in 1D, since the 2D methods will do the same number of
time steps while performing more computations per cell.

Appendix A.

A.1. Convergence properties. Here we justify our expectations of second
order accuracy in L∞ and the choices of specific limiters (2.4), (3.1), (3.2). For the
time being we refer to ∆thj ,∆tcd just as ∆t since this argument doesn’t focus on the
differences between the two. In order to produce global truncation errors (GTE) of at
most O(∆x2) for both hyperbolic and a parabolic regimes, we need local truncation
errors (LTE) of sizes at most O(∆x4),O(∆x2∆t),O(∆x∆t2), or O(∆t3).

First we discuss why the diffusion terms are ignored in the half-time equations
(2.10), (3.6) (skipping the diffusion term in (2.10) follows from skipping it in (2.8)).
Since the half-time values are already scaled in a sense by O(∆t) in (2.11), (3.7), and
the diffusion terms are scaled by an additional O(∆t) in (2.10), (3.6), then these terms’
influence in the final LTE is at mostO(σ∆t2) which results in GTE of at mostO(σ∆t). If
we are in a parabolic regime, then O(∆t) =O(∆x2),σ=O(1) and ignoring the diffusion
terms doesn’t affect the desired accuracy. If we are in a hyperbolic regime, then σ=
O(∆x) and the diffusion terms affect the LTE as O(∆t2∆x), hence they can be ignored
again.

A.2. Second order accuracy of the Hamilton–Jacobi scheme. Now we
consider FHJ Equation (1.1). A centered difference for ut(x,tn+ 1

2
) gives us the midpoint

method:

u(x,tn+1) =u(x,tn)+∆t
∂

∂t
u(x,tn+ 1

2
)+O(∆t3),⇒

u(x,tn+1) =u(x,tn)+∆t

[
−H

(
∂

∂x
u(x,tn+ 1

2
)

)
+f
(
x,m(x,tn+ 1

2
)
)

+σ
∂2

∂2x
u(x,tn+ 1

2
)

]
+O(∆t3). (A.1)

Suppose all values unj are exact for every xj at a fixed time tn. We can also interpolate

m̂ values at times tn,tn+ 1
2

up to at least O(∆x2) accuracy with Equation (4.1) as

explained in Subsection 4.1. Comparing (2.11) and (A.1), we see that an acceptable
LTE are achieved if

(ûxx)nj+ 1
2

=
∂2

∂2x
u(xj+ 1

2
,tn)+O(∆x2), (A.2)

1

2

(
unj +unj+1

)
− (∆x)2

8
(ûxx)nj+ 1

2
=u(xj+ 1

2
,tn)+O(∆x4), (A.3)

(ûx)
n+ 1

2

j+ 1
2

=
∂

∂x
u(xj+ 1

2
,tn+ 1

2
)+O(∆x2) [or O(∆t∆x)], (A.4)

m
n+ 1

2

j+ 1
2

=m(xj+ 1
2
,tn+ 1

2
)+O(∆x2), (A.5)
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σ
(ûx)n

j+ 3
2

−(ûx)n
j− 1

2

2∆x
=σ

∂2

∂2x
u(xj+ 1

2
,tn+ 1

2
)+O(∆x2). (A.6)

Condition (A.2) is satisfied by the limiter (2.4) with θ= 2, or the UNO limiter. Note
that condition (A.2) is not satisfied for the usual minmod limiter ((2.4) with θ= 1) at
local extrema. Then (A.3) comes from taking Taylor expansions of u(xj ,tn),u(xj+1,tn)
at xj+ 1

2
. Condition (A.5) is guaranteed by our time interpolation. In order to verify

(A.4), we need to look at the half-time step Equation (2.10). Then we see that condition
(A.4) holds if:

(ûx)nj+ 1
2

=
∂

∂x
u(xj+ 1

2
,tn)+O(∆x2), (A.7)

mn
j+ 1

2
=m(xj+ 1

2
,tn)+O(∆x), (A.8)

(m̂x)nj+ 1
2

=
∂

∂x
m(xj+ 1

2
,tn)+O(∆x). (A.9)

(A.7) is clearly satisfied by (2.3), (A.8) is true by the time interpolation properties, and
(A.9) follows from (A.8) and the properties of the minmod limiter (3.2). Finally, for
the left side of (A.6) we have:

σ
(ûx)n

j+ 3
2

−(ûx)n
j− 1

2

2∆x
=σ

(
∂2

∂2x
u(xj+ 1

2
,tn)+O(∆x2)

)
=σ

(
∂2

∂2x
u(xj+ 1

2
,tn+ 1

2
)+O(∆t)+O(∆x2)

)
=σ

∂2

∂2x
u(xj+ 1

2
,tn+ 1

2
)+O(∆x2),

where in the last equality we used that σO(∆t) =O(∆x2) by the CFL condition (2.12).
Thus we have verified all conditions (A.2)–(A.9), which means that the central difference
scheme (2.11) provides second order accuracy in L∞.

Remark A.1. If we consider the simplified scheme (2.13), we immediately see, in
the spirit of Equation (A.3), that not considering second derivatives of û results in
approximating u(xj+ 1

2
,tn) by the term 1

2

(
unj +unj+1

)
. By standard Taylor expansion at

xj+ 1
2

we have

1

2

(
unj +unj+1

)
=u(xj+ 1

2
,tn)+O(∆x2),

hence this term gives us LTE of size O(∆x2). This means that in a hyperbolic regime
we obtain GTE of size O(∆x), and in a parabolic regime the scheme doesn’t converge
since the GTE is O(1).

A.3. Second order accuracy of the convection-diffusion
scheme. Now we consider BCD Equation (1.2), a cen-
tered difference for mt(x,tk− 1

2
) gives us the midpoint method:

m(x,tk−1) =m(x,tk)−∆t
∂

∂t
m(x,tk− 1

2
)+O(∆t3),⇒
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m(x,tk−1) =m(x,tk)+∆t

[
∂

∂x

(
H ′
(
∂

∂x
u(x,tk− 1

2
)

)
m(x,tk− 1

2
)

)

+σ
∂2

∂2x
m(x,tk− 1

2
)

]
+O(∆t3). (A.10)

Suppose all values mk
j+ 1

2

are exact for every xj+ 1
2

at a fixed time tk. We can also

interpolate û values at times tk,tk− 1
2

up to at least O(∆x2) accuracy with Equation (4.2)

as explained in Subsection 4.1. Comparing (3.7) and (A.10), we see that acceptable LTE
are achieved if

1

∆x

(
(m̂X)kj+ 3

2
−(m̂X)kj+ 1

2

)
=

∂2

∂2x
m(xj+1,tk)+O(∆x2), (A.11)

1

2

(
mk

j+ 1
2

+mk
j+ 3

2

)
−∆x

8

(
(m̂X)kj+ 3

2
−(m̂X)kj+ 1

2

)
=m(xj+1,tk)+O(∆x4), (A.12)

(ûx)
k− 1

2

j+ 1
2

=
∂

∂x
u(xj+ 1

2
,tk− 1

2
)+O(∆x2), (A.13)

m
k− 1

2

j+ 1
2

=m(xj+ 1
2
,tk− 1

2
)+O(∆x2) [or O(∆t∆x)], (A.14)

σ
mk

j+ 5
2

−mk
j+ 3

2

−mk
j+ 1

2

+mk
j− 1

2

2∆x2
=

σ
∂2

∂2x
m(xj+1,tk− 1

2
)+O(∆x2) [or O(∆t∆x)].

(A.15)

Condition (A.11) is satisfied by the UNO limiter (3.1). The choice of UNO is important,
since condition (A.11) is not true for the minmod limiter (3.2). Then (A.12) comes from
taking Taylor expansions of m(xj+ 1

2
,tk),m(xj+ 3

2
,tk) at xj+1. The left side of condition

(A.13) is computed by doing time interpolations, followed by applying (2.3) on them,
hence the condition is true by the time interpolation properties and (A.7). In order to
verify (A.14), we need to look at the half-time step Equation (3.6). Then we see that
condition (A.14) holds if:

(ûx)kj+ 1
2

=
∂

∂x
u(xj+ 1

2
,tk)+O(∆x), (A.16)

(ûxx)kj+ 1
2

=
∂2

∂2x
u(xj+ 1

2
,tk)+O(∆x), (A.17)

(m̂x)kj+ 1
2

=
∂

∂x
m(xj+ 1

2
,tk)+O(∆x). (A.18)

Condition (A.16) follows immediately from (A.13), and (A.17) follows from time inter-
polation properties and (A.2). Condition (A.18) is guaranteed by the minmod limiter
(3.2). Finally, the argument about condition (A.15) is the same as the one for condition
(A.6). We have verified all conditions (A.11)–(A.18) hence the central difference scheme
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(3.7) provides second GTE. The second order accuracy of our scheme was observed in
all test examples with smooth solutions.

Thus we have verified all conditions (A.11)–(A.18), hence the central difference
scheme (3.7) provides second order accuracy in L∞.

Remark A.2. If we consider the simplified scheme (3.9), we immediately see, in the
spirit of Equation (A.12), that not considering first derivatives of m̂ results in approx-

imating m(xj+1,tk) by the term 1
2

(
mk

j+ 1
2

+mk
j+ 3

2

)
. By standard Taylor expansion at

xj+1 we have

1

2

(
mk

j+ 1
2

+mk
j+ 3

2

)
=m(xj+1,tk)+O(∆x2),

hence this term gives us LTE of size O(∆x2). This means that in a hyperbolic regime we
obtain GTE of size O(∆x), and in a parabolic regime the GTE is O(1) and we verified
numerically that the scheme doesn’t converge in this case.
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