Convergence of the basic iterative methods

We already studied the convergence of Jacobi and Gauss-Seidel iterations for strictly diagonally dominant matrices A in $Ax = b$. This class is not exotic, but much larger in the class of SPD matrices, so we consider A an SPD.

In fact, we can study convergence of much more general class of iterative method based on the following more general splitting of A

1. A is an SPD matrix, $(Ax,x) > 0$, $x \neq 0$ even when $x \in \mathbb{C}^n$.
2. $A = D - C - C^T$, where
 (a) D is an SPD matrix
 (b) $\alpha D - C$, $\alpha > \frac{1}{2}$ is invertible
Examples of splittings

I. The simplest case is when

\[D = \text{diagonal of } A \]

obviously all \(a_{ii} > 0 \) \(\Rightarrow \) \(D \) is an SPD

\[C = \text{strictly lower triangular part of } A \]

obviously this is the classical SOR, GS

II. Let \(A \) be written in the block form

\[A = D - C - CT \]

where \(D \) is block diagonal matrix

III. Any other splitting that satisfies the above requirements

Example

\[X = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} \]

\[x_j = (x_{j1}, x_{j2}, \ldots, x_{jm}) \]

\[x_m \]

\[x_1 \]

\[-x_1 \]
\[D_1 = \begin{bmatrix} 4 + h^2 & -1 & 0 & 0 & 0 \\ -1 & 4 + h^2 & -1 \\ 0 & 0 & -1 & 4 + h^2 \end{bmatrix} \text{ n x n matrix} \]

\[C_1 = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \text{ n x n matrix} \]

\[A = \begin{bmatrix} D_1 & 0 & 0 & 0 \\ 0 & D_1 & 0 & 0 \\ 0 & 0 & \ldots & D_1 \end{bmatrix} \]

\[A \mathbf{x} = \mathbf{A} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = -n \text{ dimensional vector} \]

\[D_1^{-1} \text{ is essentially inverting the above tridiagonal matrix} \]
Possible splits:

\[
\begin{array}{cccc}
 & y_1 & y_2 & y_3 & y_4 \\
1 & 1 & 0 & 0 & 0 \\
2 & 0 & 1 & 0 & 0 \\
3 & 0 & 0 & 1 & 0 \\
4 & 0 & 0 & 0 & 1 \\
\end{array}
\]

Reordering of the unknowns in some applications.

\[
\begin{bmatrix}
 2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2 \\
\end{bmatrix} \begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 \\
\end{bmatrix} = b
\]

\[
\begin{bmatrix}
 2 & 0 & -1 & 0 \\
 0 & 2 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
0 & -1 & 0 & 2 \\
\end{bmatrix} \begin{bmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 y_4 \\
\end{bmatrix}
\begin{cases}
 \text{red} \\
 \text{black}
\end{cases}
\]

\[
A = \begin{bmatrix} D_1 & C^T \\ C & D_1 \end{bmatrix}
\]

\[
D_2 = \begin{bmatrix} D_1 & 0 \\ 0 & D_2 \end{bmatrix}
\]

Red black ordering of the nodes/unknowns.
Convergence of SOR (and GS) for A an SPD

Consider A an SPD matrix, i.e., $(Ax,x)>0$, $x \neq 0$

$$A = D - C - C^T \quad (C - \text{lower triangular})$$

$$Q = \alpha D - C$$

More general splitting is when C is such

that D, SPD, $4D - C - C^T = A$

Theorem: If A is an SPD matrix, Q-SPD and $\alpha > \frac{1}{2}$ then the SOR iteration with

$Q = \alpha D - C$ converges for any starting vector $x^{(0)}$

$$Q (x^{(k+1)} - x^{(k)}) = b - A x^{(k)}$$

Equivalent

$$x^{(k+1)} = (I - Q^{-1}A) x^{(k)} + Q^{-1}b$$

Remark: SOR $\alpha = \frac{1}{2}$, D-diagonal C-lower

G-S $\alpha = 1$

Proof: We write the error transfer matrix

$G = I - Q^{-1}A$ and we need to prove that $p(G) < 1$.
Let \((\lambda, x)\) be an eigenpair of \(Q\), i.e.
\[Qx = \lambda x \]
\(\Rightarrow\) define \(y = (I - Q)x\)

or \((1)\)
\[y = x - Qx = (1 - \lambda)x = x - (I - Q)x = Q^T Ax \]

\[\Rightarrow \quad Qy = Ax \neq (\lambda D - C)y = Ax \]

and also

\(2)\)
\[Q - A = \lambda D - C - (D - C - C^T) = \lambda D - D + C^T \]

\[(a)\]
\[(\lambda D - C)y = Ax \]
\[(\lambda D - D + C^T)y = (Q - A)y = Ax - Ay = A(x - y) = A(x - Qx) \]

\[(b)\]
\[(\lambda D - D + C^T)y = AGx \]

(a) take inner product with \(y\) to get
\[((\lambda D - C)y, y) = (Ax, y) \]

(b) take inner product with \(y\) to get
\[((\lambda D - D + C^T)y, y) = (AGx, y) \]
\[\alpha(Dy,y) - (C'y,y) = (Ax, y) \]
\[\alpha(Dy,y) - (D'y,y) + (C'y,y) = (y, A'Ax) \]

Now add these two to get
\[(2\alpha-1)(D'y,y) = (Ax, y) + (y, A'Ax) \]
\[(2\alpha-1)(Dy,y) = (Ax, (1-x)x) + (y, (1-x)x, A'Ax) \]
\[(2\alpha-1)(D'y,y) = (1-x)(Ax, x) + (1-x)(x, A'Ax) \]
\[y = (1-x)x \]
\[(2\alpha-1)(1-x)^2(D'y,x) = (1-121^2)(Ax, x) \]
\[0 \quad \text{real} > 0 \quad \text{real} > 0 \]

Is it possible \(\alpha = 1 \) ?
\[Gx = x \quad \Rightarrow \quad (I - G)x = 0 \]
\[(I - \Xi + QA)x = 0 \quad QA \text{ Singularity} \]

Thus \(1 - |x|^2 > 0 \) impossible
\[(Ax, x) > 0 \quad \Rightarrow \quad |x|^2 > 0 \]
\[(D'y, x) > 0 \quad |x| < 1 \]

\[p(G) < 1 \]

Converges
There is a way to optimize the choice of the parameter in SOR. For the case of the matrix

\[
A = \begin{bmatrix}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{bmatrix}
\]

\[
\omega_{\text{opt}} = 2 \left(1 - \frac{\lambda}{n+1}\right)
\]

for this choice \(\rho(G_{\text{SOR}}) = 1 - \frac{2\lambda}{n+1} \)

Please, run your programs of PA*2 with this choice of \(\omega \) to see the difference in the number of iterations.

The same example Jacobi has

\[
\rho(G_{\text{Jacobi}}) = 1 - \frac{\pi^2}{(n+1)^2}
\]

much closer to 1

\[
\rho(G) = \rho(G_{\text{Jacobi}})
\]

much slower to converge.

I would like you to experiment with these two methods for this matrix to see the difference in the number of iterations when you run it for \(n = 20, 40, 80 \).
Quitting

Any matrix

\[\| A \|_2 = \frac{\| Ax \|_2}{\| x \|_2} = ? \]

Any symmetric \(A \) is diagonalizable \(A \) is symmetric \(A = A^T \)

\[\| A \|_2 = \rho(A) = \max_{\lambda \in \text{spec}(A)} | \lambda | \]

\[\| A \|_2 = \frac{\| A x, A x \|}{\| x \|_2^2} = \frac{(A^T A x, x)}{(x, x)} = \rho(A^T A) \]

\[\| A \|_2 = \rho(A A^T)^{1/2} \]

A strictly diagonally dominant Jacobi converges
A strictly column-wise diagonally dominant does Jacobi converge ?

A SPD \(\rho(\text{rich}) = | 1 - \epsilon \lambda | = \frac{\lambda - \lambda_0}{\lambda_0 + \lambda} \)

Richardson \(\epsilon = \lambda_1 \leq \ldots \leq \lambda_n = \lambda_n \)