MATH609-601
 Homework \#2

September 27, 2012

1. Problems

This contains a set of possible solutions to all problems of HW-2. Be vigilant since typos are possible (and inevitable).
(1) Problem 1 (20 pts) For a matrix $A \in R^{n \times n}$ we define a norm by

$$
\|A\|=\max _{x \in R^{n}, x \neq 0}\|A x\| /\|x\|
$$

where $\|x\|$ is a norm in R^{n}. Show that the following is true:
(a) $\|A\| \geq 0$ and if $\|A\|=0$ then $A=0$ (here 0 is the zero matrix in $\mathcal{R}^{n \times n}$);
(b) $\|\alpha A\|=|\alpha|\|A\|, \alpha$ any real number;
(c) $\|A+B\| \leq\|A\|+\|B\|$;
(d) $\|A B\| \leq\|A\|\|B\|$.
(2) Problem 2 (10 pts) Show that a symmetric n by n matrix with positive element that is strictly row-wise diagonally dominant is also positive definite.
(3) Problem 3 (10 pts) Let $\rho(A)$ be the spectral radius of the matrix A. Show that for any integer $k>0, \rho\left(A^{k}\right)=(\rho(A))^{k}$.
(4) Problem 4 (10 pts) Prove that $\|A\|_{2} \leq \sqrt{n}\|A\|_{\infty}$ for any matrix $A \in R^{n \times n}$.
(5) Problem 5 (10 pts) Prove that for any nonsingular matrices $A, B \in R^{n \times n}$,

$$
\frac{\left\|B^{-1}-A^{-1}\right\|}{\left\|B^{-1}\right\|} \leq \operatorname{cond}(A) \frac{\|B-A\|}{\|A\|}
$$

where $\|\cdot\|$ is a matrix norm and $\operatorname{cond}(A)$ is the condition number of A w.r.t that norm.
(6) Problem 6 (10 pts) Show that any strictly diagonally dominant symmetric matrix with positive diagonal elements has only positive eigenvalues.
(7) Problem 7 (10 pts) Show that if A is symmetric and positive definite matrix and B is symmetric then the eigenvalues of $A B$ are real. If in addition B is positive definite then the eigenvalues of $A B$ are positive.
(8) Problem 8 (20 pts) Show that
(a) $\|A\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right|, \quad$ where $\quad\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right| ;$
(b) $\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right|$, where $\quad\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$.

2. Solutions

(1) Problem 1:

Proof. (a) If $A=0$, then cleary $A x=0, \forall x \in R^{n}$, so

$$
\|A\|=\max _{x \in R^{a}, x \neq 0} \frac{\|A x\|}{\|x\|}=0
$$

Otherwise $\exists a_{i j} \neq 0, a_{i j} \in A$. Let $e_{j}=[0, \cdots, 1, \cdots, 0]^{T}$, then

$$
\|A\|=\max _{x \in R^{a}, x \neq 0} \frac{\|A x\|}{\|x\|} \geq \frac{\left\|A e_{j}\right\|}{\left\|e_{j}\right\|}>0
$$

In summary, $\|A\| \geq 0$, and $\|A\|=0$ iff $A=0$.
(b)

$$
\begin{aligned}
\|\alpha A\|=\max _{x \in R^{n}, x \neq 0} \frac{\|\alpha A x\|}{\|x\|} & =\max _{x \in R^{n}, x \neq 0} \frac{|\alpha|\|A x\|}{\|x\|} \\
& =|\alpha| \max _{x \in R^{n}, x \neq 0} \frac{\|A x\|}{\|x\|}=|\alpha|\|A\|
\end{aligned}
$$

(c)

$$
\begin{aligned}
\|A+B\| & =\max _{x \in R^{n}, x \neq 0} \frac{\|(A+B) x\|}{\|x\|}=\max _{x \in R^{n}, x \neq 0} \frac{\|A x+B x\|}{\|x\|} \\
& \leq \max _{x \in R^{n}, x \neq 0} \frac{\|A x\|+\|B x\|}{\|x\|} \\
& \leq \max _{x \in R^{n}, x \neq 0} \frac{\|A x\|}{\|x\|}+\max _{x \in R^{n}, x \neq 0} \frac{\|B x\|}{\|x\|}=\|A\|+\|B\|
\end{aligned}
$$

(d) According to the definition of the matrix norm, $\|A\|=\max _{x \in R^{n}}\|A x\| /\|x\|$ we have $\|A x\| \leq\|A\|\|x\|, \forall x \in R^{n}$. So, $\forall x \in R^{n}$ we have the following inequalities:

$$
\|A B x\| \leq\|A\|\|B x\| \leq\|A\|\|B\|\|x\|
$$

Therefore, $\|A B\|=\max _{x \in R^{n}, x \neq 0} \frac{\|A B x\|}{\|x\|} \leq \max _{x \in R^{a}, x \neq 0} \frac{\|A\|\|B\| x \|}{\|x\|}=\|A\|\|B\|$.

(2) Problem 2:

Proof. $A \in R^{n \times n}$ is symmetric, so \exists a real diagonal matrix Λ and an orthonormal matrix Q such that $A=Q \Lambda Q^{T}$, where the diagonal values of Λ are A 's eigenvalues $\lambda_{i}, i=1, \cdots, n$ and the columns of Q are the corresponding eigenvectors.

According to Gerschgorin's theorem, A's eigenvalues are located in the union of disks

$$
d_{i}=\left\{z \in C:\left|z-a_{i, i}\right| \leq \sum_{j \neq i}\left|a_{i, j}\right|\right\}, \quad i=1, \cdots, n
$$

Because A is positive and strictly row-wise diagonal dominant, so,

$$
d_{i}=\left\{z \in C: 0<a_{i, i}-\sum_{j \neq i} a_{i, j} \leq z \leq \sum_{j} a_{i, j}\right\}, \quad i=1, \cdots, n .
$$

Therefore all A 's eigenvalues are positive, then $\forall x \in R^{n}, x \neq 0$ we have,

$$
x^{T} A x=x^{T} Q \Lambda Q^{T} x=y^{T} \Lambda y>0, \text { where } y=Q^{T} x \neq 0 .
$$

i.e. A is positive definite.
(3) Problem 3: First, recall that the set of complex numbers $\sigma(A)=\{\lambda$: $\operatorname{det}(A-$ $\lambda I)=0\}$ is called spectrum of A.
Proof. Then, $\forall \lambda \in \sigma(A)$, we show that $\lambda^{k} \in \sigma\left(A^{k}\right)$. Indeed, let $A u=\lambda u$ with $u \neq 0$.

$$
A^{k} u=\lambda A^{k-1} u=\cdots=\lambda^{k} u
$$

For any $\mu \in \sigma\left(A^{k}\right)$, we have $A^{k} v=\mu v, v \neq 0$. Since, v belong to the range of A, so at least there exists one eigenvalue $\lambda=\mu^{1 / k}$ s.t.

$$
A v=\mu^{1 / k} v
$$

Thus, we always have that for any $|\mu|$ where $A^{k} u=\mu u, u \neq 0$, there exists a $|\lambda|=|\mu|^{1 / k}$ where $A u=\lambda u, u \neq 0$; for any $|\lambda|$ where $A u=\lambda u, u \neq 0$, there exists a $|\mu|=\left|\lambda^{k}\right|=|\lambda|^{k}$ where $A^{k} u=\mu u, u \neq 0$. So,

$$
\rho\left(A^{k}\right)=\max _{\mu \in \sigma\left(A^{k}\right)}|\mu| \equiv \max _{\lambda \in \sigma(A)}|\lambda|^{k}=\left(\max _{\lambda \in \sigma(A)}|\lambda|\right)^{k}=(\rho(A))^{k} .
$$

(4) Problem 4:

Proof. It follows from the obvious string of inequalities

$$
\begin{aligned}
\|A\|_{2} & =\max _{\|x\|_{2}=1}\|A x\|_{2}=\max _{\|x\|_{2}=1}\left(\sum_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right)^{2}\right)^{1 / 2} \\
& \leq \max _{\|x\|_{2}=1}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{2} \sum_{j=1}^{n} x_{j}^{2}\right)^{1 / 2} \quad \text { Schwartz inequality } \\
& =\left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{2}\right)^{1 / 2} \leq\left(\sum_{i=1}^{n}\left(\sum_{j=1}^{n}\left|a_{i j}\right|\right)^{2}\right)^{1 / 2} \\
& \leq\left(n\left(\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right|\right)^{2}\right)^{1 / 2} \leq\left(n\|A\|_{\infty}^{2}\right)^{1 / 2}=\sqrt{n}\|A\|_{\infty}
\end{aligned}
$$

(5) Problem 5:

Proof. Assume the norm $\|\cdot\|$ satisfies the submultiplicative property, i.e. $\|A B\| \leq\|A\|\|B\|$ (subordinate matrix norms have this property).

$$
\begin{aligned}
\left\|B^{-1}-A^{-1}\right\| & =\left\|A^{-1}-B^{-1}\right\|=\left\|B^{-1}(B-A) A^{-1}\right\| \\
& \leq\left\|B^{-1}\right\|\|B-A\|\left\|A^{-1}\right\|
\end{aligned}
$$

A, B are nonsingular matrices, divide $\left\|B^{-1}\right\|$ on both sides,

$$
\begin{aligned}
\frac{\left\|B^{-1}-A^{-1}\right\|}{\left\|B^{-1}\right\|} \leq\|B-A\|\left\|A^{-1}\right\| & =\frac{\|B-A\|\left\|A^{-1}\right\|\|A\|}{\|A\|} \\
& =\operatorname{cond}(A) \frac{\|B-A\|}{\|A\|}
\end{aligned}
$$

(6) Problem 6:

Proof. For any symmetrix matrix A, all its eigenvalues are real.
According to Gerschgorin's theorem, A's eigenvalues are located in the union of disks

$$
d_{i}=\left\{z \in C:\left|z-a_{i, i}\right| \leq \sum_{j \neq i}\left|a_{i, j}\right|\right\}, \quad i=1, \cdots, n
$$

i.e.,

$$
d_{i}=\left\{z \in C: a_{i, i}-\sum_{j \neq i}\left|a_{i, j}\right| \leq z \leq a_{i, i}+\sum_{j \neq i}\left|a_{i, j}\right|\right\}, \quad i=1, \cdots, n .
$$

Because A 's diagonal elements are positive and A is strictly diagonal dominant, so,

$$
\begin{aligned}
& a_{i, i}-\sum_{j \neq i}\left|a_{i, j}\right|=\left|a_{i, i}\right|-\sum_{j \neq i}\left|a_{i, j}\right|>0 \\
& a_{i, i}+\sum_{j \neq i}\left|a_{i, j}\right|=\left|a_{i, i}\right|+\sum_{j \neq i}\left|a_{i, j}\right|>0, \quad i=1, \cdots, n .
\end{aligned}
$$

So, all this disks are located at the right side of the y-axis in the complex plane, so all eigenvales of A are positive.

(7) Problem 7:

Proof. First possible solution:
(1) Consider an eigenvalue λ and its eigenvector ψ of the matrix $A B$, that is $A B \psi=\lambda \psi$. We do not know whether λ and ψ are real, so we assume that they are complex. Recal that the inner product of two complex vectors ψ and ϕ is defined as $(\phi, \psi)=\sum_{i} \phi_{i} \bar{\psi}_{i}$, where $\bar{\psi}$ is the complex conjugate to ψ. Recall, that $(\phi, \psi)=\overline{(\psi, \phi)}$. For the inner product of the complex vectors $A B \psi$ and ψ we get

$$
A B \psi=\lambda \psi \quad \Rightarrow B A B \psi=\lambda B \psi, \quad \Rightarrow(B A B \psi, \psi)=\lambda(B \psi, \psi)
$$

Now using the symmetry of A and B we get

$$
(B A B \psi, \psi)=(\psi, B A B \psi)=\overline{(B A B \psi, \psi)}
$$

which means that the complex number $(B A B \psi, \psi)$ is equal to its complex conjugate, i.e. the number is real. In the same way we prove that $(B \psi, \psi)$ is reas as well, from where we conclude that λ is real. Then we conclude that ψ is real as well.
(2) If A and B are positive definite, then $(B \psi, \psi)>0$ and $(B A B \psi, \psi)>0$, therefore from $(B A B \psi, \psi)=\lambda(B \psi, \psi)$ it follows that $\lambda>0$.

Another possible solution (for those with more advanced knowlegde in linear algebra):
(1) A is SPD , its square root exists $A^{1 / 2}$ which is SPD , then

$$
A B \sim A^{-1 / 2} A B A^{1 / 2}=A^{1 / 2} B A^{1 / 2}
$$

Because both $A^{1 / 2}$ and B are symmetric, then

$$
\left(A^{1 / 2} B A^{1 / 2}\right)^{T}=\left(A^{1 / 2}\right)^{T} B^{T}\left(A^{1 / 2}\right)^{T}=A^{1 / 2} B A^{1 / 2}
$$

so $A^{1 / 2} B A^{1 / 2}$ is symmetric, and the eigenvalues of $A^{1 / 2} B A^{1 / 2}$ are real. $A B \sim A^{1 / 2} B A^{1 / 2}$, they have the same spectrum, so all eigenvalues of $A B$ are real.
(2) If B is also SPD, we can show that $A^{1 / 2} B A^{1 / 2}$ is SPD. The symmetry is shown in (1). Now show positive definite. $\forall x \in R^{n}, x \neq 0$ with $y=A^{1 / 2} x \neq 0$ we have

$$
\left(A^{1 / 2} B A^{1 / 2} x, x\right)=\left(B A^{1 / 2} x, A^{1 / 2} x\right)=(B y, y)>0
$$

So $A^{1 / 2} B A^{1 / 2}$ is SPD, and all its eigenvalues are positive. $A B \sim A^{1 / 2} B A^{1 / 2}$, they have the same spectrum, so all eigenvalues of $A B$ are positive.
we show (b) as well
(8) Problem 8:

Proof. We prove (a). First we show that $\|A\|_{\infty} \leq \max _{i} \sum_{j}\left|a_{i, j}\right|$. Indeed,

$$
\begin{aligned}
\|A\|_{\infty} & =\max _{\|x\|_{\infty}=1}\|A x\|_{\infty} \\
& =\max _{\|x\|_{\infty}=1} \max _{i}\left|\sum_{j=1}^{n} a_{i j} x_{j}\right| \\
& \leq \max _{\|x\|_{\infty}=1} \max _{i} \sum_{j=1}^{n}\left|a_{i j}\right| \| x_{j} \mid \\
& \leq \max _{\|x\|_{\infty}=1} \max _{i} \max _{j}\left|x_{j}\right| \sum_{j=1}^{n}\left|a_{i j}\right| \\
& =\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right|
\end{aligned}
$$

Next we show aslo that $\max _{i} \sum_{j}\left|a_{i, j}\right| \leq\|A\|_{\infty}$. Assume that for some integer $k \in[1, n]$ we have

$$
\sum_{j=1}^{n}\left|a_{k j}\right|=\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right| .
$$

By choosing a vector y s.t.,

$$
y_{j}=\left\{\begin{array}{c}
1, \text { for } a_{k, j} \geq 0 \\
-1, \text { for } a_{k, j}<0
\end{array}\right.
$$

Then, $\|y\|_{\infty}=1$ and

$$
\|A\|_{\infty}=\sup _{x \in \mathcal{R}^{n},\|x\|_{\infty}=1}\|A x\|_{\infty} \geq\|A y\|_{\infty}=\sum_{j}\left|a_{k, j}\right|=\max _{i} \sum_{j}\left|a_{i, j}\right| .
$$

Thus, from the inequalities $\max _{i} \sum_{j}\left|a_{i, j}\right| \leq\|A\|_{\infty} \leq \max _{i} \sum_{j}\left|a_{i, j}\right|$, it follows that

$$
\|A\|_{\infty}=\max _{i} \sum_{j}\left|a_{i, j}\right| .
$$

The inequality (b) is shown in a similar way.

