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Abstract. This paper is concerned with the construction of a fast algorithm for computing the
maximum speed of propagation in the Riemann solution for the Euler system of gas dynamics with
the co-volume equation of state. The novelty in the algorithm is that it stops when a guaranteed
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1. Introduction. The objective of this paper is to propose a fast algorithm to
approximate the maximum wave speed in the Riemann problem for the Euler equa-
tions of gas dynamics. This quantity, or an approximation thereof, is used in many
numerical methods to approximate the solution of the compressible Euler equations
using various representations: finite volumes, discontinuous Galerkin, continuous fi-
nite elements, etc., see e.g., Rusanov [16, Eq. (9)] or Harten et al. [11, Eq. (2.6b)].
The motivation for the present work comes from a multidimensional finite element
technique recently proposed in Guermond and Popov [10]. This method is explicit
and uses continuous finite elements on unstructured grids in any space dimension.
The artificial viscosity in the method is defined so that having an upper bound on the
maximum speed of propagation in the one-dimensional Riemann problems guaranties
that all the entropy inequalities are satisfied and the algorithm is invariant domain
preserving in the sense of Chueh et al. [7], Hoff [12], Frid [9], i.e., the density and
the internal energy are nonnegative and the specific entropy satisfies a local minimum
principle. It is also shown therein that the closer the upper bound on the maximum
wave speed the larger the admissible CFL. We stress here that it is not the entire solu-
tion of the Riemann problem that is required to ensure the above properties, but only
a guaranteed estimate on the maximum wave speed. Standard Riemann solvers, either
approximate or exact, are designed to give an approximation of the solution at the in-
terface, and this in general require solving for intermediate states in the Riemann fan.
This task is far more computationally intensive than estimating the maximum wave
speed of the Riemann fan. Note in passing that traditional estimates of the maximum
wave speed in ideal gases, which consists of taking max(|uL|+aL, |uR|+aR), where a is
the speed of sound and u is the velocity, could be wrong or an overestimate thereof (a
counterexample is produced in the appendix B), see e.g., Kurganov and Tadmor [14,
Eq. (3.2)] or Toro [17, §10.5.1]. In conclusion, we claim that max(|uL|+aL, |uR|+aR)
is not an upper bound on the maximum wave speed, and solving for the intermediate
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state, as done in traditional Riemann solvers, is expensive and not necessary to ensure
that invariant domains are preserved, as established in [10].

The novelty of the present work is the construction of a fast algorithm for com-
puting the maximum wave speed in the Riemann problem for the Euler equations
with the co-volume equation of state (which includes ideal gases). One important
feature of the algorithm is that it terminates when an upper bound for the maximum
speed is obtained with a prescribed tolerance. The algorithm has cubic convergence
and the upper bound is guaranteed for gasses with co-volume equation of state and a
heat capacity ratio 1 < γ ≤ 5/3. We have obtained 10−15 accuracy in at most three
steps in all the numerical experiments we have done with the proposed algorithm.

This paper is organized as follows. We introduce some notation and collect general
statements about the one-dimensional Riemann problem in §2. The main result of this
section is the well known Proposition 2.1. We introduce additional notation in §3 and
recall the expression for the extreme wave speeds of the 1-wave and the 3-wave. We
introduce the algorithm to compute a guaranteed upper bound on the maximum wave
speed in §4. It is shown in Theorem 4.5 that the algorithm terminates in finite time
and delivers a guaranteed upper bound up to any prescribed threshold. An important
result that makes the convergence of the method cubic and guarantees the upper
bound is stated in Theorem 4.1. The gap condition proved in Lemma 4.6 is essential to
prove that the algorithm terminates in finite time. Both Theorem 4.1 and Lemma 4.6
are original to the best of our knowledge. The performance of the algorithm is tested
in §5. Additional theoretical statements for the co-volume equation of state and
counter-examples showing that max(|uL|+ aL, |uR|+ aR) may be sometimes smaller
and sometimes bigger than the actual maximum wave speed of the Riemann problem
are reported in appendices A and B.

2. Preliminaries. We introduce notations and discuss the notion of Riemann
problem in this section. The main result is the well known Proposition 2.1. The
reader who is already familiar with Riemann problems and Proposition 2.1 can skip
this section and go directly to §3.

2.1. Formulation of the problem. Consider the compressible Euler equations

(2.1) ∂tc +∇·(f(c)) = 0, c =

 ρ
m
E

 , f(c) =

 m
m⊗m

ρ + pI
m
ρ (E + p)

 ,

where the independent variables are the density ρ, the momentum vector field m
and the total energy E. The velocity vector field u is defined by u := m/ρ and the
internal energy density e by e := ρ−1E− 1

2‖u‖
2
`2 , where ‖ · ‖`2 is the Euclidean norm.

The quantity p is the pressure. The symbol I denotes the identity matrix in Rd×d.
In this paper, we only consider the so-called co-volume gasses obeying the co-volume
Equation Of State (EOS),

(2.2) p(1− bρ) = (γ − 1)eρ,

with b ≥ 0; the case b = 0 corresponds to an ideal gas. The constant b is called the
co-volume and γ > 1 is the ratio of specific heats. Sometimes, the co-volume EOS is
called the Noble-Abel EOS. We refer to Toro [17, Chapter 1.2], Baibuz et al. [1] and
Johnston [13] for more details on these EOS and the related thermodynamics.
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In the context of the method proposed in Guermond and Popov [10], we consider
the following one-dimensional Riemann problem:

(2.3) ∂tc + ∂x(f(c)·n) = 0, (x, t) ∈ R×R+, c(x, 0) =

{
cL, if x < 0

cR, if x > 0,
.

where n is any unit vector in Sd(0, 1). The solution to this problem is also invoked
in many Riemann-solver-based Godunov type methods, see e.g., Toro and Titarev
[18], Bouchut and Morales de Luna [3], Castro et al. [5], Balsara et al. [2]. We stress
that we are only interested in estimating from above the maximum wave speed in
(2.3). It is shown in [10] that having an upper bound on the maximum speed of
propagation of the one-dimensional Riemann problem guaranties that the first-order
algorithm described in [10] is invariant domain preserving in the sense of Chueh et al.
[7], Hoff [12], Frid [9], and that it satisfies all the entropy inequalities.

The problem (2.3) is hyperbolic, since ∂ρp(ρ, s) is positive, and the Jacobian of
f(c)·n is diagonalizable with real eigenvalues. It is well known in the case of ideal
and co-volume gases with γ > 1 that (2.3) has a unique (physical) solution, which we
henceforth denote c(n,uL,uR), see Toro [17, Chapter 4.7].

Note that the admissibility condition for the left and right states is 0 < 1 −
bρL, 1 − bρR < 1. A simple but lengthy verification shows that the exact solution of
the Riemann problem in all possible cases stays admissible across the entire Riemann
fan, that is 1 − bρ > 0. Being unaware of a reference for this result, we give a proof
in the appendix for completeness, see Proposition A.1.

2.2. Structure of the Riemann problem. The multidimensional Riemann
problem (2.3) was first described in the context of dimension splitting schemes in two
space dimensions in Chorin [6, p. 526]. The general case is treated in Colella [8, p. 188],
see also Toro [17, Chapter 4.8]. We make a change of basis and introduce t1, . . . , td−1
so that {n, t1, . . . , td−1} forms an orthonormal basis of Rd. With this new basis we
have m = (m,m⊥)T, where m := ρu, u := u·n, m⊥ := ρ(u·t1, . . . ,u·td−1) := ρu⊥.
The projected equations are

(2.4) ∂tc + ∂x(n·f(c)) = 0, c =


ρ
m
m⊥

E

 , n·f(c) =


m

1
ρm

2 + p

um⊥

u(E + p)

 .

Using ρ, u, u⊥ and the specific entropy s as dependent variables, the above
problem can be rewritten

(2.5)


∂tρ+ ∂x(ρu) = 0

∂tu+ u∂x(u) + ρ−1∂xp(ρ, s) = 0

∂tu
⊥ + u∂x(u⊥) = 0

∂ts+ u∂x(s) = 0,

and the Jacobian is 
u ρ 0T 0

ρ−1∂ρp u 0T ρ−1∂sp
0 0 uI 0
0 0 0T u

 .
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The eigenvalues are λ1 = u −
√
∂ρp(ρ, s), with multiplicity 1, λ2 = · · · = λd+1 =

u, with multiplicity d, and λd+2 = u +
√
∂ρp(ρ, s), with multiplicity 1. One key

observation is that the Jacobian does not depend on m⊥, see Toro [17, p. 150]. As a
consequence the solution of the Riemann problem with data (cL, cR), is obtained in
two steps.

2.2.1. First step. We solve the one-dimensional Riemann problem

(2.6) ∂t

 ρ
m
E

+ ∂x

 m
1
ρm

2 + p
m
ρ (E + p)

 = 0, with p(1− bρ) = (γ − 1)ρ
(
E − m2

2ρ

)

with data cnL := (ρL,mL·n, EL)T, cnR := (ρR,mR·n, ER)T, where E = E − 1
2

‖m⊥‖2
`2

ρ .

The one-dimensional Riemann problem (2.6) is strictly hyperbolic and all the char-
acteristic fields are either genuinely nonlinear or linearly degenerate. Any Riemann
problem of this type with n fields has a unique self-similar weak solution in Lax’s
form for any initial data such that ‖uL − uR‖`2 ≤ δ, see Lax [15] and Bressan [4,
Thm 5.3]. In particular there are 2n numbers

(2.7) λ−1 ≤ λ
+
1 ≤ λ

−
2 ≤ λ

+
2 ≤ . . . ≤ λ−n ≤ λ+n ,

defining up to 2m+ 1 sectors (some could be empty) in the (x, t) plane:

(2.8)
x

t
∈ (−∞, λ−1 ),

x

t
∈ (λ−1 , λ

+
1 ), . . . ,

x

t
∈ (λ−n , λ

+
n ),

x

t
∈ (λ+n ,∞).

The Riemann solution is uL in the sector x
t ∈ (−∞, λ−1 ) and uR in the last sector

x
t ∈ (λ+n ,∞). The solution in the other sectors is either a constant state or an

expansion, see Bressan [4, Chap. 5]. The sector λ−1 t < x < λ+n t, 0 < t, is henceforth
referred to as the Riemann fan. The key result that we are going to use is that there
is a maximum speed of propagation λmax(n,uL,uR) := max(|λ−1 |, |λ+n |) such that for
t ≥ 0 we have

(2.9) u(x, t) =

{
uL, if x ≤ −tλmax(n,uL,uR)

uR, if x ≥ tλmax(n,uL,uR).

In the special case of the one dimensional Euler equations of gas dynamics (2.6) with
the co-volume EOS, we have n = 3, the smallness assumption on the Riemann data is
not needed, see Toro [17, Chap. 4], and the Riemann fan is composed of three waves
only: (i) two genuinely nonlinear waves, λ±i , i ∈ {1, 3}, which are either shocks (in
which case λ−i = λ+i := λi) or rarefaction waves; (ii) one linearly degenerate middle
wave which is a contact discontinuity, λ−2 = λ+2 =: u∗.

2.2.2. Second step. We complete the full solution of the Riemann problem
(2.4) by determining m⊥. We compute m⊥ by solving ∂tm

⊥ + ∂x(um⊥) = 0. The

solution is composed of up to four states: m⊥L , m⊥,∗L , m⊥,∗R , m⊥R,

(2.10) m =


m⊥L if x ≤ λ+1 t,
m⊥,∗L if λ+1 t ≤ x ≤ λ2t,
m⊥,∗R if λ2t ≤ x ≤ λ−3 t,
m⊥R if λ−3 t ≤ x,
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where m⊥,∗L is such that m⊥,∗L = m⊥L if λ−1 6= λ+1 (i.e., if the leftmost wave is a

rarefaction) or m⊥,∗L is given by the Rankine-Hugoniot condition uLm
⊥
L − u∗m

⊥,∗
L =

λ1(m⊥L−m
⊥,∗
L ) otherwise (i.e., if the leftmost wave is a shock). Similarly m⊥,∗R is com-

puted as follows: m⊥,∗R = m⊥R if λ−3 6= λ+3 (i.e., the rightmost wave is a rarefaction) or

m⊥,∗R is given by the Rankine-Hugoniot condition uRm
⊥
R−u∗m

⊥,∗
R = λ3(m⊥R−m

⊥,∗
R )

otherwise (i.e., the rightmost wave is a shock). The Rankine-Hugoniot condition is

automatically satisfied across the contact wave u∗(m⊥,∗L −m⊥,∗R ) = λ2(m⊥,∗L −m⊥,∗R )
since u∗ := λ2. Note that the solution given in Toro [17, §3.2.4,§4.8] is correct only if
the two extreme waves (i.e., the 1-wave and the 3-wave) are both rarefactions.

2.2.3. Maximum wave speed. The bottom line of the above argumentation
is that the organization of the Riemann fan is entirely controlled by the solution of
(2.6) and therefore we have

Proposition 2.1. In the case of gases obeying the co-volume equation of state,
the maximum wave speed in (2.4) is

(2.11) λmax(cnL, c
n
R) = max((λ−1 (cnL, c

n
R))−, (λ

+
3 (cnL, c

n
R))+),

z− = max(0,−z), z+ = max(0, z), and λ−1 (cnL, c
n
R), λ+3 (cnL, c

n
R) are the two extreme

wave speeds in the Riemann problem (2.6) with data (cnL, c
n
R).

The goal of this paper is to propose a fast algorithm to estimate accurately from
above the maximum speed of propagation λmax(cL, cR). This program is achieved by
estimating λ−1 (cnL, c

n
R) from below and λ+3 (cnL, c

n
R) from above.

3. Computation of λ−1 (cnL, c
n
R) and λ+3 (cnL, c

n
R). We restrict ourselves to the

case where both states, cL and cR, are not vacuum states, i.e., ρL, ρR > 0, eL, eR ≥ 0,
and admissible sates 1− bρL, 1− bρR > 0. There is no loss of generality in numerical
applications since the algorithms we have in mind, see Guermond and Popov [10], use
only averages of the exact Riemann solution over the entire Riemann fan. Therefore,
if the left and the right states are not vacuum states, the average of the exact Riemann
solution over the Riemann fan will not be a vacuum state. Moreover, a simple but
lengthy verification shows that the exact solution of the Riemann problem in all
possible cases is admissible for all time, that is 1 − bρ > 0. This result is proved in
Proposition A.1 in the appendix A.

The no vacuum condition 0 < ρL, ρR and the admissibility conditions 0 < 1 −
bρL, 1 − bρR, 0 ≤ eL, eR imply that pL, pR ∈ [0,∞). Then the local sound speed is

given by aZ =
√

γpZ
ρZ(1−bρZ) where the index Z is either L or R. We introduce the

following notation AZ := 2(1−bρZ)
(γ+1)ρZ

, BZ := γ−1
γ+1pZ and the functions

φ(p) := f(p, L) + f(p,R) + uR − uL(3.1)

f(p, Z) :=


(p− pZ)

(
AZ
p+BZ

) 1
2

if p ≥ pZ ,

2aZ(1−bρZ)
γ−1

((
p
pZ

) γ−1
2γ − 1

)
if p < pZ ,

(3.2)

where again Z is either L or R. Let a0Z be the speed of sound for the ideal gas,
and let A0

Z , B0
Z , φ0(p) and f0(p, Z) be the above defined quantities in the ideal

gas case, i.e., we take b = 0 in all definitions. Then we have that aZ =
a0Z√
1−bρZ

,

f(p, Z) = f0(p, Z)
√

1− bρZ and

(3.3) φ(p) = f0(p, L)
√

1− bρL + f0(p,R)
√

1− bρR + uR − uL.
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It is shown in Toro [17, Chapter 4.3.1] (see also Bressan [4, Eq. (5.36)]) that the
functions f0(p, L), f0(p,R) ∈ C2(R+;R) are monotone increasing and concave down.
Therefore the function φ(p) ∈ C2(R+;R) is also monotone increasing and concave
down. It can also be shown that the weak third derivative is non-negative and locally

bounded. Observe that φ(0) = uR − uL − 2a0L
√
1−bρL

γ−1 − 2a0R
√
1−bρR

γ−1 . Therefore, φ has

a unique positive root if and only if φ(0) < 0, i.e.,

(3.4) uR − uL <
2a0L
√

1− bρL
γ − 1

+
2a0R
√

1− bρR
γ − 1

.

This is the well known non-vacuum condition in the case of ideal gas (b = 0 above),
see Toro [17, (4.40), p. 127]. We henceforth denote this root by p∗, i.e., φ(p∗) = 0.
We conventionally set p∗ = 0 if (3.4) does not hold. It can be shown that, whether
there is formation of vacuum or not, the two extreme wave speeds λ−1 (cnL, c

n
R) and

λ+3 (cnL, c
n
R) enclosing the Riemann fan are

λ−1 (cnL, c
n
R) = uL − aL

(
1 +

γ + 1

2γ

(
p∗ − pL
pL

)
+

) 1
2

,(3.5)

λ+3 (cnL, c
n
R) = uR + aR

(
1 +

γ + 1

2γ

(
p∗ − pR
pR

)
+

) 1
2

,(3.6)

where z+ := max(0, z).
Remark 3.1. (Two rarefaction waves) Note that if φ(pL) > 0 then pL > p∗, by

monotonicity of φ, thereby implying that λ−1 (uL, uR) = uL−aL in this case. Similarly
if φ(pR) > 0, then pR > p∗ and λ+3 (uL, uR) = uR + aR. This observation means that
there is no need to compute p∗ to estimate λmax(cnL, c

n
R) when φ(min(pL, pR)) > 0.

This happens when the two extreme waves are rarefactions. Noticing that p∗ does not
need to be evaluated in this case is important since traditional techniques to compute
p∗ in this situation may require a large number of (unnecessary) iterations, see Toro
[17, p. 128]. This is particularly true when (3.4) is violated, since in this case there is
a formation of a vacuum state.

4. Accurate estimation of λmax from above. In this section we present an
algorithm for computing an accurate lower bound on λ−1 (cnL, c

n
R) and an accurate

upper bound on λ−3 (cnL, c
n
R). This is done by estimating accurate lower and upper

bounds on the intermediate pressure state p∗.

4.1. Elementary waves. If the exact solution of the Riemann problem contains
two rarefaction waves, i.e., p∗ ≤ min(pL, pR), no computation of p∗ is needed, see
Remark 3.1.

Let us define pmin := min(pL, pR), pmax := max(pL, pR) and let us assume that
φ(pmin) ≤ 0. Note that if φ(pmin) = 0, then p∗ = pmin and nothing needs to be done.
We now assume that p∗ > pmin and we define

(4.1) φR(p) =
2aL(1− bρL)

γ − 1

((
p

pL

) γ−1
2γ

− 1

)
+

2aR(1− bρR)

γ − 1

((
p

pR

) γ−1
2γ

− 1

)
+ uR − uL.

Note that φR is monotone increasing and concave down. We also have the following
result (see also left panel in Figure 4.1).
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Theorem 4.1. Assume γ ∈ (1, 53 ]. For any p ≥ 0, the graph of (p, φ(p)) is
above the graph of (p, φR(p)); more precisely, φR(p) = φ(p) for all p ∈ [0, pmin] and
φR(p) < φ(p) for all p ∈ (pmin,∞).

Proof. Note that the two curves (p, φ(p))and (p, φR(p)) coincide if p ≤ pmin

because both are the sum of the two rarefaction curves and the constant uR − uL. If
pmin < p ≤ pmax the (p, φ(p)) curve is the sum of one rarefaction curve, one shock
curve starting from p = pmin and the constant uR − uL. If p ≥ pmax the (p, φ(p))
curve is the sum of two shock curves and the constant uR − uL, see (3.2). Now we
invoke Lemma 4.2 twice to complete the proof, once with p0 = pmin (ρ0 being the
associated density) and once with p0 = pmax (ρ0 being the associated density).

Lemma 4.2. Let p0 > 0 and ρ0 such that 0 < 1−bρ0 < 1. Assume that 1 < γ ≤ 5
3 .

We define the shock curve passing through p0 by

fS(p) = (p− p0)

√
2

(γ + 1)ρ0

(
p+

γ − 1

γ + 1
p0
)− 1

2 √
1− bρ0

and the rarefaction curve by

fR(p) =
2
√

γp0

ρ0

γ − 1

((
p

p0

) γ−1
2γ

− 1

)√
1− bρ0.

Then fR(p) < fS(p) for any p > p0 and fR(p0) = fS(p0), i.e., the shock curve is
above the rarefaction curve.

Proof. We rescale both the shock and the rarefaction curves for p ≥ p0 by intro-
ducing the variable x = p/p0 and set fS(p) = f̃S(x), fR(p) = f̃R(x). The two curves
now are now

f̃S(x) =

√
2p0(1− bρ0)√

(γ + 1)ρ0
(x− 1)√
x+ γ−1

γ+1

, f̃R(x) =
2
√
γp0(1− bρ0)

(γ − 1)
√
ρ0

(
x
γ−1
2γ − 1

)
.

Note that f̃S(1) = f̃R(1) = 0. We assume from now on that x > 1 and we want to
show that f̃S(x) > f̃R(x) for any x > 1 if γ ≤ 5/3. Instead of proving this directly,
we consider the function

g(x) =
ρ0(γ + 1)

(
x+ γ−1

γ+1

)
2p0(1− bρ0)

(
x
γ−1
2γ − 1

)2 (f̃S(x)2 − f̃R(x)2
)

and we will show that g(x) > 0 for any x > 1 if γ ≤ 5/3. We change variable again

and set y := x
γ−1
2γ with g(x) = g̃(y). Then setting yα = x with α = 2 + 2

γ−1 we have

(4.2) g̃(y) =

(
yα − 1

y − 1

)2

− α((α− 1)yα + 1).

We rearrange the terms in (4.2) to get

g̃(y) =

(
yα − 1

y − 1
− 1

2
α(α− 1)(y − 1)

)2

− 1

4
α2(α− 1)2(y − 1)2 − α2, ∀y > 1.
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Using a Taylor expansion of yα at y = 1 for any y > 1 and α ≥ 4, we obtain the
inequality

yα − 1

y − 1
≥ α+

1

2
α(α− 1)(y − 1) +

1

6
α(α− 1)(α− 2)(y − 1)2.

Using this inequality in (4.2), we have that

g̃(y) ≥
(
α+

1

6
α(α− 1)(α− 2)(y − 1)2

)2

− 1

4
α2(α− 1)2(y − 1)2 − α2

which is equivalent to

g̃(y) ≥
(

1

6
α(α− 1)(α− 2)(y − 1)2

)2

+
α2(α− 1)

12
(α− 5)(y − 1)2.

Therefore, we infer that g̃(y) > 0 for any y > 1 provided α ≥ 5. Note that the
condition α ∈ [5,∞) is equivalent to γ ∈ (1, 53 ]. Hence we conclude that f̃S(x) > f̃R(x)
for any x > 1 if 1 < γ ≤ 5/3.

Remark 4.1. (Physical range of γ) Note that the γ-law usually assumes that γ =
M+2
M , whereM ≥ 3 is the number of degrees of freedom of the molecules composing the

gas. We have M = 3 for monatomic gases and M = 5 for diatomic gases. Therefore,
the physical range of γ for M ∈ [3,∞) is γ ∈ (1, 53 ], which happens to be exactly the
range of application of Lemma 4.2.

Remark 4.2. (Non physical range of γ) In the non-physical range γ > 5/3 it can
be shown via Taylor series argument that there is x0 = x0(γ) > 1 such that fS(x0) <
fR(x0). Therefore, the statements of both Theorem 4.1 and Lemma 4.2 are false if
γ ∈ (5/3,+∞).

4.2. The algorithm to estimate λmax. We now continue with the construction
of an algorithm for computing the intermediate pressure p∗, keeping in mind that
the quantity we are after is λmax. Recall that we only consider the case φ(pmin) <
0. Both functions φ and φR are strictly monotone increasing and limp→∞ φ(p) =
limp→∞ φR(p) = +∞, therefore they each have a unique zero. The zero of φ is p∗ and
we denote the zero of φR by p̃∗. The zero of φR is easy to compute

(4.3) p̃∗ =

a0L√1− bρL + a0R
√

1− bρR − γ−1
2 (uR − uL)

a0L
√

1− bρL p
− γ−1

2γ

L + a0R
√

1− bρR p
− γ−1

2γ

R


2γ
γ−1

and is referred to in the literature as the two-rarefaction approximation to p∗, see for
example equation (4.103) in Toro [17, Chapter 4.7.2].

Lemma 4.3. We have p∗ < p̃∗ in the physical range of γ, 1 < γ ≤ 5
3 .

Proof. This is an easy consequence of Theorem 4.1. To the best of our knowledge,
this result, which is important to establish accurate a priori error estimates on p∗, is
new.

We now propose an iterative algorithm that constructs two sequences (pk1 , p
k
2)k≥0

such that pk1 ≤ p∗ ≤ pk2 for all k ≥ 0 and limk→+∞ pk1 = p∗ = limk→+∞ pk2 . The
initialization process of the algorithm is described in Algorithm 1.
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Algorithm 1 Initialization

1: Set pmin = min(pL, pR), pmax = max(pL, pR)
2: if φ(pmin) ≥ 0 then
3: Set p∗ = 0 and compute λmax using (3.5)-(3.6) return
4: end if
5: if φ(pmax) = 0 then
6: p∗ = pmax and compute λmax using (3.5)-(3.6) return
7: end if
8: if φ(pmax) < 0 then
9: Set p1 = pmax and p02 = p̃∗ . This guarantees that p1 < p∗ < p02

10: else
11: Set p1 = pmin and p02 = min(pmax, p̃

∗) . This guarantees that p1 < p∗ < p02
12: end if
13: Set p01 := max(p1, p

0
2 − φ(p02)/φ′(p02)) . Improve p1 with one Newton step

14: Proceed to Algorithm 2 with (p01, p
0
2)

Note that step 13 in Algorithm 1 is a Newton iteration. This step is optional, but
we nevertheless include it to correct the bias introduced by the computation of p̃∗.
Our experience is that p̃∗ is very often much closer to p∗ than both pmin and pmax.
The concavity of φ guaranties that p02 − φ(p02)/φ′(p02) < p∗, whence p01 < p∗ < p02 as
desired.

Given two positive numbers p1, p2, we now construct two quadratic polynomials
Pu(p) and Pd(p) such that Pu(p) interpolates φ at the points p1, p2, p2 and Pd(p) in-
terpolates φ at the points p1, p1, p2. Here we use the standard notation that repeating
a point means that we interpolate the function and its derivative at the said point.
We abuse the notation by omitting the index k for the two polynomials Pu and Pd.

Lemma 4.4. Pu and Pd have each a unique zero over the interval (p1, p2) denoted
pu(p1, p2) and pd(p1, p2), respectively:

pd(p1, p2) = p1 −
2φ(p1)

φ′(p1) +
√
φ′(p1)2 − 4φ(p1)φ[p1, p1, p2]

(4.4a)

pu(p1, p2) = p2 −
2φ(p2)

φ′(p2) +
√
φ′(p2)2 − 4φ(p2)φ[p1, p2, p2]

.(4.4b)

and the following holds for any p ∈ (p1, p2):

(4.5) Pu(p) < φ(p) < Pd(p), ∀p ∈ (p1, p2)

which implies that p1 < pd(p1, p2) < p∗ < pu(p1, p2) < p2.
Proof. It is a standard result in approximation theory that

φ(p)− Pu(p) = φ[p1, p2, p2, p](p− p1)(p− p2)2(4.6a)

φ(p)− Pd(p) = φ[p1, p1, p2, p](p− p1)2(p− p2)(4.6b)

where φ[p1, p2, p2, p] and φ[p1, p1, p2, p] are divided differences. For completeness we
recall that f [x] = f(x) and given x0 ≤ . . . ≤ xn we have f [x0, . . . , xn] = 1

n!f
(n)(x0)

if x0 = . . . = xn and f [x0, . . . , xn] = f [x0,...,xn−1]−f [x1,...,xn]
x0−xn otherwise. Moreover we

define f [xσ(0), . . . , xσ(n)] = f [x0, . . . , xn] for any σ ∈ Sn+1 where Sn+1 is the set all
the permutations over the set {0, . . . , n}. It is known that for any x0, . . . , xn we have
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Fig. 4.1. Left: φ(p) = φR(p) for all p ≤ p1 and φR(p) < φ(p) for all p ∈ (pmin,∞). Right:
Quadratic polynomials Pu(p) and Pd(p).

f [x0, . . . , xn] = 1
n!f

(n)(ξ) for some ξ ∈ [min(x0, . . . , xn),max(x0, . . . , xn)]. In the case
at hand, we know that φ′′′(ξ) > 0 for any ξ > 0, then (4.5) is a simple consequence
of (4.6). Both quadratic polynomials Pu and Pd are concave down, and both are
negative at p = p1 and positive at p = p2; hence they each have a unique zero in the
interval (p1, p2), which we denote pu(p1, p2) and pd(p1, p2) respectively. Moreover, the
inequality (4.5) implies that pd(p1, p2) < p∗ < pu(p1, p2). The proof is complete.

The result of Lemma 4.4 is illustrated in the right panel of Figure 4.1. The algo-
rithm that we propose proceeds as follows: given a pair (pk1 , p

k
2), compute (pk+1

1 , pk+1
2 )

such that pk+1
1 = pd(pk1 , p

k
2) and pk+1

2 = pu(pk1 , p
k
2) for k ≥ 0. Owing to Lemma 4.4, we

have pk1 ≤ pk+1
1 ≤ p∗ ≤ pk+1

2 ≤ pk2 and the convergence rate of the iteration process is
cubic.

Using (3.5)-(3.6), we have vk11 ≤ λ−1 ≤ vk12 and vk31 ≤ λ+3 ≤ vk32, where

vk11 = uL − aL
(

1 + γ+1
2γ

(pk2−pL
pL

)
+

) 1
2

, vk12 = uL − aL
(

1 + γ+1
2γ

(pk1−pL
pL

)
+

) 1
2

,(4.7a)

vk31 = uR + aR

(
1 + γ+1

2γ

(pk1−pR
pR

)
+

) 1
2

, vk32 = uR + aR

(
1 + γ+1

2γ

(pk2−pR
pR

)
+

) 1
2

,(4.7b)

and we have λkmin < λmax ≤ λkmax for any k ≥ 0 with the definitions

(4.8) λkmax := max((vk32)+, (v
k
11)−), λkmin := (max((vk31)+, (v

k
12)−))+.

We now propose a stopping criterion for the above algorithm.
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Algorithm 2 Computation of λmax

Input: p01, p
0
2, ε

Output: λmax

1: while true do
2: Compute λkmax and λkmin

3: if λkmin > 0 then . Must happen owing to gap condition

4: if
λkmax

λkmin

− 1 ≤ ε then

5: exit infinite loop
6: end if
7: end if
8: if φ(pk1) > 0 or φ(pk2) < 0 then . Check for roundoff error
9: exit infinite loop

10: end if
11: pk+1

1 = pd(pk1 , p
k
2)

12: pk+1
2 = pu(pk1 , p

k
2)

13: end while
14: λmax = λkmax

Theorem 4.5. For every ε > 0, there exists k(uL, aL, uR, aR, γ, ε) such that
Algorithm 2 terminates when k = k(uL, aL, uR, aR, γ, ε), and in this case

(4.9) |λkmax − λmax| ≤ ελmax,

i.e., the relative error on λmax is guaranteed to be bounded by ε.
Proof. Owing the gap Lemma 4.6, there is c(γ) > 0 such that λ+3 − λ−1 ≥

c(γ)(amax + amin), which in turn implies that d := λ+3 − λ
−
1 > 0 owing to the hyper-

bolicity condition min(amax, amin) > 0. Hence λmax = max((λ+3 )+, (λ
−
1 )−) ≥ d

2 > 0,

(recall that min(x−, y+) ≥ |x−y|
2 ). Since both sequences (pk1)k≥0 and (pk2)k≥0 con-

verge to p∗, there is k0(uL, aL, uR, aR, γ, ε) such that λkmin > 1
2λmax ≥ 1

4d > 0
for any k ≥ k0(uL, aL, uR, aR, γ, ε). Hence the condition of the if statement in
line 3 of Algorithm 2 is achieved for any k ≥ k0(uL, aL, uR, aR, γ, ε). Likewise
there is k(uL, aL, uR, aR, γ, ε) ≥ k0(uL, aL, uR, aR, γ, ε) such that the condition of

the if statement in line 4 holds true since limk→+∞
λkmax

λkmin

= 1. Hence, when k =

k(uL, aL, uR, aR, γ, ε) the algorithm terminates and

|λkmax − λmax|
λmax

=
λkmax − λmax

λmax
=
λkmax

λmax
− 1 since λmax < λkmax

≤ λkmax

λkmin

− 1 ≤ ε since λkmin < λmax.

This completes the proof.
Remark 4.3. (Jacobi vs. Seidel iterations) Note that steps 11 and 12 in Algo-

rithm 2 are of Jacobi type. The Seidel version of this algorithm is pk+1
1 = pd(pk1 , p

k
2),

pk+1
2 = pu(pk+1

1 , pk2).
Remark 4.4. (Roundoff errors) The algorithm converges so fast and is so accurate

that it may happen that either the test φ(pk1) > 0 or the test φ(pk2) < 0 turns out
to be true due to rounding errors. This then causes the discriminant in (4.4b) to be
negative thereby producing NaN. To avoid the roundoff problem one must check the
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sign of φ(pk1) and φ(pk2) before computing pk+1
1 and pk+1

2 (see line 8 in Algorithm 2).
If φ(pk1) > 0 then p∗ = pk1 up to roundoff errors and if φ(pk2) < 0 then p∗ = pk2 up to
roundoff errors.

4.3. Gap condition. The purpose of this section is to establish the following
result, which we call the gap condition.

Lemma 4.6 (Gap condition). Given the left state cnL := (ρL,mL, EL) and the right
state cnR := (ρR,mR, ER) of the one-dimensional Riemann problem (2.6), we have the
following gap condition for the smallest and largest eigenvalues of the problem

(4.10) λ+3 − λ
−
1 ≥ c(γ)(aL + aR)

where aL, aR are the local sound speeds and c(γ) is a constant defined by

(4.11) c(γ) :=

{
2
√

2(γ−1)
γ+1 if γ ∈ (1, 3],

1 if γ ∈ (3,+∞).

Proof. There are three possible cases for the solution of the Riemann problem.
Case 1. The solution contains two rarefaction waves: φ(pmin) ≥ 0. This implies

that either there exists p∗ ≥ 0 such that φ(p∗) = 0 or we have vacuum, i.e., 0 ≤ φ(0).
If φ(p∗) = 0 we derive

uR − uL =
2aL(1− bρL)

γ − 1

(
1−

(
p∗

pL

) γ−1
2γ

)
+

2aR(1− bρR)

γ − 1

(
1−

(
p∗

pR

) γ−1
2γ

)
≥ 0,

and in the case of vacuum we get

uR − uL ≥
2

γ − 1
(aL(1− bρL) + aR(1− bρR)) > 0.

Using the fact that p∗ ≤ pmin, we derive from (3.5)–(3.6) that

λ+3 − λ
−
1 = uR − uL + aL + aR ≥ aL + aR,

which proves (4.10) with constant c(γ) = 1 in this case.
Case 2. The solution contains one rarefaction and one shock wave: φ(pmin) < 0 =

φ(p∗) ≤ φ(pmax). Then, we have that pmin < p∗ ≤ pmax and

0 = φ(p∗) = (p∗−pmin)

√
Amin

p∗ +Bmin
+

2amax(1− bρmax)

γ − 1

((
p∗

pmax

) γ−1
2γ

− 1

)
+uR−uL

where we recall that AZ := 2(1−bρZ)
(γ+1)ρZ

and BZ := γ−1
γ+1pZ . Using the above we derive

the following

λ+3 − λ
−
1 = amax

(
1 +

2(1− bρmax)

γ − 1

(
1−

( p∗

pmax

) γ−1
2γ
))

+ amin

((
1 +

γ + 1

2γ

p∗ − pmin

pmin

) 1
2 − (p∗ − pmin)

amin

√
Amin

p∗ +Bmin

)
≥ amax + amin∆(pmin).
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where we define ∆(Z) by

(4.12) ∆(Z) =
(
1 +

γ + 1

2γ

p∗ − pZ
pZ

) 1
2 − p∗ − pZ

aZ

√
AZ

p∗ +BZ
.

We make a substitution x = p∗

pmin
≥ 1 and, with a an abuse of notation, we transform

∆(pmin) into

(4.13) ∆(x) =

(
1 +

γ + 1

2γ
(x− 1)

) 1
2

− (x− 1)(1− bρmin)

(x+ γ−1
γ+1 )

1
2

√
2

γ(γ + 1)
.

Using the property that 0 ≤ 1− bρmin ≤ 1, we derive

(4.14) ∆(x) ≥ ∆0(x) :=

(
1 +

γ + 1

2γ
(x− 1)

) 1
2

− x− 1

(x+ γ−1
γ+1 )

1
2

√
2

γ(γ + 1)
.

We now want to find the minimum of the function ∆0(x) in the interval x ∈ [1,+∞).
We transform ∆0(x) as follows

∆0(x) =

(
γ + 1

2γ

) 1
2
(
x+

γ − 1

γ + 1

)− 1
2
(
x+

γ − 1

γ + 1
− (x− 1)

2

γ + 1

)
and after another substitution y = x− 1, and another abuse of notation, we have

∆0(y) =

(
γ + 1

2γ

) 1
2
(
y +

2γ

γ + 1

)− 1
2
(
γ − 1

γ + 1
y +

2γ

γ + 1

)
=

γ − 1

(2γ(γ + 1))
1
2

ψ(y)

where ψ(y) = (y + 2γ
γ−1 )

(
y + 2γ

γ+1

)− 1
2

. The function ψ(y) has a unique minimum on

the interval [0,+∞) at the point ymin = 2γ(3−γ)
(γ−1)(γ+1) provided that γ ≤ 3. The value

of the minimum is ψ(ymin) = 4
√

γ
(γ−1)(γ+1) . If γ > 3 then the minimum is at y = 0

and the value is ψ(0) =

√
(γ+1)

γ−1 . Using the minimum value of ψ we get the following

minimum of the function ∆0(x) on the interval [1,+∞):

∆0(x) ≥
2
√

2(γ − 1)

γ + 1
if γ ∈ (1, 3], and ∆0(x) ≥ 1 if γ ∈ (3,+∞).

This finishes the proof in the second case because for the full range of γ we get
∆(x) ≥ ∆0(x) ≥ c(γ). This again proves (4.10) since c(γ) ≤ 1 for any γ ∈ [1,∞).

Case 3. The solution contains two shock waves: φ(pmin) ≤ φ(pmax) < 0 = φ(p∗).
Then, we have that pmin ≤ pmax < p∗ and

(4.15) 0 = φ(p∗) = (p∗ − pmin)

√
Amin

p∗ +Bmin
+ (p∗ − pmax)

√
Amax

p∗ +Bmax
+ uR − uL.

Similar to the previous case we derive

λ+3 − λ
−
1 = amin

((
1 +

γ + 1

2γ

p∗ − pmin

pmin

) 1
2 − (p∗ − pmin)

amin

√
Amin

p∗ +Bmin

)

+ amax

((
1 +

γ + 1

2γ

p∗ − pmax

pmax

) 1
2 − (p∗ − pmax)

amax

√
Amax

p∗ +Bmax

)
≥ amax∆(pmin) + amin∆(pmin)
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where ∆(Z) is the same as before, see (4.3). We now use the fact that ∆(Z) ≥ c(γ)
when pZ ≤ p∗ to finish the proof in this case.

5. Numerical illustrations. We illustrate the performances of Algorithm 2 in
this section. We only consider test cases where there is at least one shock, since the
cases with two expansion waves are trivial. The set of test problems we use is based
on the performance tests given in Toro [17, Section 4.3.3]. The code that we used is
included in Appendix C.

5.1. Fast expansion and slow shock. Algorithm 2 may terminate and give
an estimate on λmax with the required accuracy before p∗ is estimated correctly.
This situation may happen when one of the two extreme waves is a fast expansion
(rarefaction) and the other wave is a slow shock. To illustrate this effect, let us assume
for instance that the left wave is a fast expansion and the right wave is the slow shock,
say pL > p∗ > pR and (λ−1 )− > (λ−3 )+ = (λ+3 )+. Note that in this case we always
have pR ≤ pk1 ≤ pk2 ≤ pL for any k ≥ 0; hence, vk11 = vk12 = uL − aL = λ−1 for any
k ≥ 0. At some point in the algorithm there will be an iteration level k such that
both pk1 and pk2 are close enough to p∗ so that 0 ≤ vk32 − λ+3 ≤ (λ−1 )− − (λ+3 )+ and
0 ≤ vk31−λ+3 ≤ (λ−1 )−−(λ+3 )+. Hence, using that x ≥ y implies that x−y+y+−x+ ≥ 0,
we have

(vk11)− − (vk32)+ = (λ−1 )− − vk32 + vk32 − (vk32)+

≥ (λ+3 )+ − λ+3 + vk32 − (vk32)+ ≥ 0.

This means that λkmax := max((vk32)+, (v
k
11)−) = (vk11)− = (λ−1 )−. Likewise

(vk12)− − (vk31)+ = (λ−1 )− − vk31 + vk31 − (vk31)+

≥ (λ+3 )+ − λ+3 + vk31 − (vk31)+ ≥ 0,

i.e., λkmin := max((vk31)+, (v
k
12)−)+ = (vk12)− = (λ−1 )−. In conclusion at iteration k,

we have
λkmax

λkmin

− 1 = 0; in other word the algorithm stops irrespective of the tolerance,

and λkmax = λ−1 but pk1 and pk2 may still be far from p∗. To illustrate this phenomenon
we consider the following test cases

case ρL ρR uL uR pL pR
1 1.0 1.0 .0 .0 100.0 0.01
2 1.0 1.0 1.0 1.0 100.0 0.01
3 1.0 1.0 2.18 2.18 100.0 0.01

We run the algorithm with ε = 10−15. The results are

case k λkmax λmax

1 0 11.83215956619923 11.83215956619923
2 1 10.83215956619923 10.83215956619923
3 2 9.65215956619923 9.65215956619923

case k pk1 pk2 p∗

1 0 37.70559999364363 82.98306927558072 46.09504424886797
2 1 45.87266091833658 46.70007404915459 46.09504424886797
3 2 46.09504109404150 46.09505272562230 46.09504424886797
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In the first case, The algorithm terminates just after the initialization, i.e., at k =
0, and gives the exact value of λmax up to a rounding error, but it gives p01 < p∗ < p02.
In the second case the algorithm terminates at k = 1 with the exact value of λmax

up to a rounding error, but it gives p11 < p∗ < p12. By biasing the problem a little bit
more to the right, i.e., by taking uL = uR = 2.18 , the algorithm terminates at k = 2
and gives again the exact value of λmax up to a rounding error, but p21 < p∗ < p22.
We have verified that for uL = uR ≥ 2.2 the right-moving shock wave is the fastest
and the algorithm always terminates at k = 3 and gives pk1 = p∗ = pk2 up to round-off
errors.

5.2. Fast shock. The most demanding situation happens when the fastest wave
is a shock, since in this case the algorithm must find p∗ up to the assigned tolerance
to terminate. We consider the following two cases introduced in Toro [17, Section
4.3.3]

case ρL ρR uL uR pL pR
1 1.0 1.0 10.0 10.0 1000.0 0.01
2 5.99924 5.99242 19.5975 -6.19633 460.894 46.0950

In case 1, the left wave is a rarefaction and the right wave is a shock. In case 2, both
waves are shocks. We run the algorithm with various values of ε; the results are

ε k λkmax pk1 pk2
1 10−1 1 33.81930602421521 455.2466713625296 472.7977828960125
1 10−2 2 33.51755796979217 460.8933865271423 460.8946107187795
1 10−15 3 33.51753696690324 460.8937874913834 460.8937874913835

2 10−1 1 12.25636731290528 1691.520678281327 1692.676852734373
2 10−4 2 12.25077812313116 1691.646955398068 1691.646955407751
2 10−15 3 12.25077812308434 1691.646955399126 1691.646955399126

We observe that the algorithm converges very fast and it takes three steps to
reach 10−15 accuracy on λmax. These two examples are representative of all the tests
we have done in that most of the times the tolerance 10−15 is achieved in at most
three steps.

When running the code 1, 000, 000 times on case 2 with 10−15 tolerance, which
amounts to three iterations per case, the total CPU time was 0.934 seconds on a ma-
chine with the following characteristics: Intel(R) Xeon(R) CPU E3-1220 v3 3.10GHz.

Appendix A. Co-volume equation of state. We verify in this appendix the
following statement.

Proposition A.1. If the left and right states in the Riemann problem (2.6) are
such that 0 < 1 − bρL, 1 − bρR < 1, then the exact solution of the Riemann problem
satisfies 0 < 1− bρ ≤ 1.

Proof. We split the proof into five parts where we analyze the solution across
each wave.

(1) Left rarefaction wave. Assume that the left wave is a rarefaction, then the

wave speed, S := u − a = u −
√

γp
ρ(1−bρ) , should increase along the wave from left to

right. Using that both the specific entropy s = log(e
1

γ−1 ( 1
ρ − b)) and the generalized
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left Riemann invariant u + 2a
γ−1 (1 − bρ) are constant across the left rarefaction, we

obtain (see Eq. (4.93) and Eq. (4.94) in Toro [17, Chapter 4.7]):

S(p) = uL +
2(1− bρL)

γ − 1
aL −

2(1− bρ+ γ−1
2 )

(γ − 1)(1− bρ)
aL(1− bρL)

(
p

pL

) γ−1
2γ

where 1
ρ−b = ( 1

ρL
−b)

(
pL
p

) 1
γ

. Owing to the assumption 1
ρL
−b > 0, we conclude that

ρ = ρ(p) is an increasing function of p. After some computation, we also prove that
the speed S(p) is a decreasing functions of p. Therefore the rarefaction wave can be
parametrized by p as a decreasing parameter from pL to p∗, i.e., the left wave is well
defined. Hence we have S(pL) ≤ S(p) for p∗ < p ≤ pL, which confirms that we have
a rarefaction wave. Finally, using that ρ(p) is a decreasing function of p, we conclude

that 0 < 1− bρL < 1− bρ. Observing also that ρ = ρL
1−bρL
1−bρ

(
p
pL

) 1
γ

we conclude that

ρ ∈ [0, ρL] since p∗ ≥ 0 and p ∈ [p∗, pL].
(2) Left shock wave. Assume that the left wave is a shock from the left state

(ρL, uL, pL) to the state (ρ, u, p). The Rankine–Hugoniot condition combined with
the equation of state implies that (see e.g., Toro [17, Chapter 4.7])

ρ =
ρL( p

pL
+ γ−1

γ+1 )
γ−1+2bρL

γ+1
p
pL

+ γ+1−2bρL
γ+1

.

For details, we refer to Toro [17, (4.89) on p.145]. We introduce y := bρ, yL := bρL
and β := p

pL
and the above equality can be re-written as follows:

y = yL
β + γ−1

γ+1
γ−1
γ+1β + 1 + 2yL

γ+1 (β − 1)
,

which is equivalent to

1− y =
1

1 + 2yL(β−1)
(γ−1)β+γ+1

(1− yL).

Hence, we conclude that provided that 0 ≤ yL < 1 and β ≥ 1, then yL ≤ y < 1. This
proves the result in the second case.

(3) Right rarefaction wave. The proof is analogous to the case of the left rarefac-
tion wave.

(4) Right shock wave. The proof is analogous to the case of the left shock wave.
(5) Contact wave. The state on the left of the contact wave is the right state from

the left wave which has already been proved to be admissible in 1–4. Similarly, the
state on the right of the contact wave is the left state from the right wave which has
also been proved to be admissible in 1–4. This completes the proof.

Appendix B. A counter-example. We show in this section that taking
max(|uL| + aL, |uR| + aR) as an estimate of the maximum wave speed in the Rie-
mann problem, as it is frequently done in the literature, can actually underestimate
the actual maximum wave speed.

For instance take uL = uR = 0 and select pL and pR so that pL/pR is a number less

than 1. Then aR = aL
√

pR
pL

√
ρL
ρR

. Now we choose ρL
ρR

so that
√

pR
pL

√
ρL
ρR

< 1; note that
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we can make this number as small as we want. Then max(|uL|+ aL, |uR|+ aR) = aL.
But uL = uR = 0 and pL < pR implies that φ(pL) < 0 and φ(pR) > 0; whence
pL < p∗ < pR. Therefore the maximum wave speed is the absolute value of the left
speed given in (3.5), aL(1 + γ+1

2γ (p
∗−pL
pL

))
1
2 , which is strictly larger than aL, whence

the conclusion.
To illustrate the above argument we now give two examples. First we consider case

2 from §5.2. The 1-wave and the 3-wave are both shocks. The ratio correct wave speed
is λmax ≈ 12.25 but the traditional estimate gives max(|uL|+ aL, |uR|+ aR) ≈ 29.97,
which is clearly an overestimate of λmax; the ratio is approximately 0.41. Second we
consider the following two states

ρL = 0.01, ρR = 1000, uL = 0, uR = 0, pL = 0.01, pR = 1000.

We obtain λmax ≈ 5.227 and max(|uL| + aL, |uR| + aR) ≈ 1.183. It is clear that
the heuristic estimate is far from the real value; the ratio is approximately 4.4. In
conclusion the estimate max(|uL|+ aL, |uR|+ aR) is grossly unreliable.

Appendix C. Source code.

! Authors : Jean−Luc Guermond and Bojan Popov , Texas A&M, Nov 2 , 2015
MODULE lambda module

PUBLIC : : lambda
PRIVATE
REAL(KIND=8) , PARAMETER : : gamma=1.4d0 , b=0.0d0
REAL(KIND=8) : : al , capAl , capBl , covl , ar , capAr , capBr , covr , exp

CONTAINS

SUBROUTINE i n i t ( rhol , pl , rhor , pr )
IMPLICIT NONE
REAL(KIND=8) , INTENT( IN) : : rhol , pl , rhor , pr
a l = SQRT(gamma∗pl / rho l )
capAl = 2/((gamma+1)∗ rho l )
capBl = pl ∗(gamma−1)/(gamma+1)
cov l = SQRT(1−b∗ rho l )
ar = SQRT(gamma∗pr/ rhor )
capAr = 2/((gamma+1)∗ rhor )
capBr = pr ∗(gamma−1)/(gamma+1)
covr = SQRT(1−b∗ rhor )
exp = (gamma−1)/(2∗gamma)

END SUBROUTINE i n i t

SUBROUTINE lambda ( to l , rhol , ul , pl , rhor , ur , pr , lambda max , pstar , k )
IMPLICIT NONE
REAL(KIND=8) , INTENT( IN) : : to l , rhol , ul , pl , rhor , ur , pr
REAL(KIND=8) , INTENT(OUT) : : lambda max , pstar
INTEGER, INTENT(OUT) : : k
REAL(KIND=8) : : lambda min , phimax , pt i lde , num, denom
REAL(KIND=8) : : phi1 , phi11 , phi12 , phi112 , phi2 , phi22 , phi221
REAL(KIND=8) : : p1 , p2 , pmin , pmax , v11 , v12 , v31 , v32
!===I n i t i a l i z a t i o n
CALL i n i t ( rhol , pl , rhor , pr )
pmin = MIN( pl , pr )
pmax = MAX( pl , pr )
k = 0
IF ( phi (pmin , ul , pl , ur , pr ) .GE. 0 ) THEN

pstar = 0 . d0
lambda max = MAX(MAX(−lambdaz ( ul , pl , a l / covl , pstar ,−1) ,0 . d0 ) , &

MAX( lambdaz ( ur , pr , ar / covr , pstar , 1 ) , 0 . d0 ) )
RETURN

END IF
phimax= phi (pmax , ul , pl , ur , pr )
IF ( phimax==0) THEN

pstar = pmax
lambda max = MAX(MAX(−lambdaz ( ul , pl , a l / covl , pstar ,−1) ,0 . d0 ) , &

MAX( lambdaz ( ur , pr , ar / covr , pstar , 1 ) , 0 . d0 ) )
RETURN

END IF
num = al ∗ cov l+ar∗ covr+(ul−ur )∗(gamma−1)/2
denom = al ∗ cov l∗pl∗∗(−exp)+ar∗ covr∗pr∗∗(−exp )
p t i l d e = (num/denom)∗∗(1/ exp )
IF ( phimax < 0 . d0 ) THEN

p1 = pmax
p2 = p t i l d e

ELSE
p1=pmin
p2 = MIN(pmax , p t i l d e )

END IF
p1 = MAX(p1 , p2−phi (p2 , ul , pl , ur , pr )/ phi pr ime (p2 , pl , pr ) )
!===I t e r a t i o n s
DO WHILE( .TRUE. )

v11 = lambdaz ( ul , pl , a l / covl , p2 ,−1)
v12 = lambdaz ( ul , pl , a l / covl , p1 ,−1)
v31 = lambdaz ( ur , pr , ar / covr , p1 , 1 )
v32 = lambdaz ( ur , pr , ar / covr , p2 , 1 )
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lambda max = MAX(MAX(v32 , 0 . d0 ) ,MAX(−v11 , 0 . d0 ) )
lambda min = MAX(MAX(MAX(v31 , 0 . d0 ) ,MAX(−v12 , 0 . d0 ) ) , 0 . d0 )
IF ( lambda min>0.d0 ) THEN

IF ( lambda max/lambda min −1.d0 .LE. t o l ) THEN
pstar = p2
RETURN

END IF
END IF
phi1 = phi (p1 , ul , pl , ur , pr )
phi11 = phi pr ime (p1 , pl , pr )
phi2 = phi (p2 , ul , pl , ur , pr )
phi22 = phi pr ime (p2 , pl , pr )
IF ( phi1>0.d0 ) THEN

lambda max = lambda min
RETURN

END IF
IF ( phi2<0.d0 ) RETURN
phi12 = ( phi2−phi1 )/( p2−p1 )
phi112 = ( phi12−phi11 )/( p2−p1 )
phi221 = ( phi22−phi12 )/( p2−p1 )
p1 = p1 − 2∗phi1 /( phi11 + SQRT( phi11∗∗2 − 4∗phi1∗phi112 ) )
p2 = p2 − 2∗phi2 /( phi22 + SQRT( phi22∗∗2 − 4∗phi2∗phi221 ) )
k = k+1

END DO
END SUBROUTINE lambda

FUNCTION lambdaz ( uz , pz , az , pstar , z ) RESULT(vv )
IMPLICIT NONE
REAL(KIND=8) , INTENT( IN) : : uz , pz , az , ps tar
INTEGER, INTENT( IN) : : z
REAL(KIND=8) : : vv
vv = uz + z∗az∗SQRT(1+MAX(( pstar−pz )/pz , 0 . d0 )∗(gamma+1)/(2∗gamma))

END FUNCTION lambdaz

FUNCTION phi (p , ul , pl , ur , pr ) RESULT(vv )
IMPLICIT NONE
REAL(KIND=8) , INTENT( IN) : : p , ul , pl , ur , pr
REAL(KIND=8) : : vv , f l , f r
IF (p>pl ) THEN

f l = (p−pl )∗SQRT( capAl /(p+capBl ) )
ELSE

f l = (2∗ a l /(gamma−1))∗((p/ pl )∗∗ exp−1)
END IF
IF (p>pr ) THEN

f r = (p−pr )∗SQRT( capAr /(p+capBr ) )
ELSE

f r = (2∗ ar /(gamma−1))∗((p/pr )∗∗ exp−1)
END IF
vv = f l ∗ cov l + f r ∗ covr + ur − ul

END FUNCTION phi

FUNCTION phi pr ime (p , pl , pr ) RESULT(vv )
IMPLICIT NONE
REAL(KIND=8) , INTENT( IN) : : p , pl , pr
REAL(KIND=8) : : vv , f l , f r
IF (p>pl ) THEN

f l = SQRT( capAl /(p+capBl ))∗(1−(p−pl )/(2∗ ( capBl+p ) ) )
ELSE

f l = ( a l /(gamma∗pl ) )∗ ( p/ pl )∗∗(−(gamma+1)/(2∗gamma))
END IF
IF (p>pr ) THEN

f r = SQRT( capAr /(p+capBr ))∗(1−(p−pr )/(2∗ ( capBr+p ) ) )
ELSE

f r = ( ar /(gamma∗pr ) )∗ ( p/pr )∗∗(−(gamma+1)/(2∗gamma))
END IF
vv = f l ∗ cov l + f r ∗ covr

END FUNCTION phi pr ime
END MODULE lambda module

PROGRAM riemann
USE lambda module
IMPLICIT NONE
REAL(KIND=8) : : rhol , ul , pl , rhor , ur , pr , lambda max , pstar , to l , t1 , t2
INTEGER : : k , n
OPEN(UNIT = 21 , FILE = ’ data ’ , FORM = ’ formatted ’ , STATUS = ’unknown ’ )
READ(21 ,∗ ) rhol , rhor , ul , ur , pl , pr
READ(21 ,∗ ) t o l
CLOSE(21)
CALL CPU TIME( t1 )
DO n = 1 , 1

CALL lambda ( to l , rhol , ul , pl , rhor , ur , pr , lambda max , pstar , k )
END DO
CALL CPU TIME( t2 )
WRITE(∗ ,∗) ’ CPU ’ , t2−t1
WRITE(∗ , ’ ( 2 (A, e23 . 17 , x ) ,A, I1 ) ’ ) ’ lambda max= ’ , lambda max , ’ ps tar = ’ , pstar , ’ k= ’ , k

END PROGRAM riemann
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