Week in Review, Sections 7.5, 8.1-8.2, and Review for Exam 1

Disclaimer: This Week in Review puts more weight on Sections 7.5, 8.1-8.2. Please study the previous Week in Reviews for more problems on previous sections.

1. In a tropical rain forest, the rainfall at time \(t \) is given by \(\varphi(t) = 0.1 - 0.1t + 0.05t^2 \) inches per hour, \(0 \leq t \leq 10 \) (hours). What is the average rainfall for time \(0 \leq t \leq 6 \)? At what time(s) is the rainfall equal to the average?

2. Find the numbers \(b \) such that the average value of \(f(x) = 2 + 6x - 3x^2 \) on the interval \([0, b]\) is equal to 3.

3. Find all continuous functions \(f : [0, \infty) \rightarrow \mathbb{R} \) such that the average of \(f \) on an arbitrary interval \([0, b]\) for \(b > 0 \) is equal to \(\sin b \).
(a) Evaluate the following integrals.

(a) \[\int e^{2x} \sin (3x) \, dx \]

(b) \[\int \sin (\ln x) \, dx \]

(c) \[\int p^5 e^{2p} \, dp \]

(d) \[\int_1^2 \frac{\ln x}{x^2} \, dx \]

(e) \[\int \sin^5 x \sqrt{\cos x} \, dx \]

(f) \[\int_0^\pi \cos^4 \left(\frac{\theta}{2} \right) \, d\theta \]
(g) \(\int x^8 \cos(x^3) \, dx \)

(h) \(\int \frac{\sin^4 x}{\cos^8 x} \, dx \)

(i) \(\int \sec^3 x \tan^5 x \, dx \)

(j) \(\int \sin \theta \sin 2 \theta \sin 3 \theta \, d\theta \)

4. The region bounded by the curves \(y = \arctan x, y = 0, \) and \(x = 1 \) is rotated about the \(y \)-axis. Find the volume of the resulting solid using both washer and shell methods.
5. Find the volume of the solid whose base is the region enclosed by $y = e^x$ and $y = e^{-x}$ for $0 \leq x \leq 1$, and whose cross sections perpendicular to the x-axis are half-discs (semicircles).

6. A rope 10 feet long is hanging over the edge of a cliff. The (linear) density of the rope varies according to the formula $\rho(x) = e^{-x^2}$ 1b/ft, where x is the vertical distance from the upper end of the rope. What is the work required to raise the rope to the top of the cliff?
Answer: $\frac{1}{2}(1 - e^{-100})$ ft-lb

7. A rectangular swimming pool full of water is 25 meters long and 10 meters wide at the top. It is 3 metres deep for its first 10 meters and then the depth decreases linearly to 1 meter at the shallow end. How much work is done in emptying the pool by pumping the water over the edge?
Answer: 7.595×10^6 J
8. Sketch the plane region bounded between \(y = \frac{1}{x}, x + y = \frac{5}{2}, x = \frac{1}{2}, \) and \(x = 3 \). Then find the area of the region.

9. Consider the region \(R \) bounded by the lines \(x = 1, x + y = 1 \) and the curve \(y = 2^x \).

 (a) Find the area \(A \) of the region \(R \).

 (b) Set up the integral (but do not integrate) to find the volume of the solid obtained by rotating the region \(R \) about the line \(x = 3 \).

 (c) Set up the integral (but do not integrate) to find the volume of the solid obtained by rotating the region \(R \) about the line \(y = -2 \).