M415H extra problem 1

Name (LAST, First): \qquad

This problem requires linear algebra. In particular, the fact that any 2×2 complex matrix A is similar (i.e. $X=T Y T^{-1}$) to either $Y=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$ or $Y=\left(\begin{array}{ll}a & 1 \\ 0 & a\end{array}\right)$ for some $a, b \in \mathbb{C}$.

1. Let $g l_{2}(\mathbb{C})$ denote the set of 2×2 complex matrices. Let $G L_{2}(\mathbb{C})$ denote the set of 2×2 invertible matrices.
(a) Prove that $\left(g l_{2}(\mathbb{C}),+\right)$ and $\left(G L_{2}(\mathbb{C}), \cdot\right)$ are groups.
(b) Define $\exp : g l_{2}(\mathbb{C}) \rightarrow G L_{2}(\mathbb{C})$ by $\exp (A)=\sum_{i=0}^{\infty} A^{i} /(i!)$. Show that \exp is well-defined and bijective. (Hint: write $A=T Y T^{-1}$ for Y as above).
(c) Show that \exp is not a group homomorphism (just find two matrices A, B so that $\exp (A+B) \neq$ $\exp (A) \exp (B))$.
(d) Let $C \in g l_{2}(\mathbb{C})$ be any matrix and consider the set \mathcal{C} of matrices of the form $k C$ where $k \in \mathbb{C}$. Show that \mathcal{C} is a subgroup of $g l_{2}(\mathbb{C})$.
(e) Show that $\exp : \mathcal{C} \rightarrow G L_{2}(\mathbb{C})$ is a group homomorphism.
