Modular Categories and Applications I

Eric Rowell

Texas A&M University

U. South Alabama, November 2009
Outline

1. Connections
 - Topological Quantum Computation

2. What is a Modular Category?
 - Fusion Categories
 - Ribbon and Modular Categories
 - Fusion Rules and Dimensions

3. Problem I
 - Enumerative Questions
 - Results

4. Problem II
 - Structural Questions
 - Empirical Evidence
Main Collaborators

- Zhenghan Wang, Microsoft Station Q
- Michael Larsen, Indiana U.
- Seung-moon Hong, U. Toledo (Ohio)
- Deepak Naidu, Texas A&M U.
- Sarah Witherspoon, Texas A&M U.
Mathematical Connections

Modular categories are related to:

- Quantum invariants of links and 3-manifolds
- Hopf algebras
- Subfactor inclusions (type II_1 finite depth)
- Kac-Moody algebras
Connections
What is a Modular Category?
Problem I
Problem II

Topological Quantum Computation

Quantum Computing: Overview

Modular Categories
(unitary)

(2+1)D TQFT
Link Invariants

Top. Phases
(i.e. anyons)

Top. Quantum Computer

Eric Rowell
Modular Categories and Applications I
Topological States

Definition (Das Sarma, et al)

A system is in a **topological phase** if its low-energy effective field theory is a *topological quantum field theory*.

Algebraic part: modular category.
Fractional Quantum Hall Effect

10^{11} \text{ electrons/cm}^2

defects=\text{quasi-particles}

9 \text{ mK}

10 \text{ Tesla}

GaAs
Topological Quantum Computation: Schematic

- Initialize
- Create particles
- Apply gates
- Particle exchange
- Measure
- Create particles
- Vacuum

Computation

Physics
Some Axioms

Definition

A **fusion category** is a monoidal category \((\mathcal{C}, \otimes, 1)\) that is:

- **\(\mathbb{C}\)-linear**: \(\text{Hom}(X, Y)\) f.d. vector space
- **abelian**: \(X \oplus Y\)
- **finite rank**: simple objects \(\{X_0 := 1, X_1, \ldots, X_{m-1}\}\)
- **semisimple**: \(Y \cong \bigoplus_i c_i X_i\)
- **rigid**: duals \(X^*, b_X : 1 \to X \otimes X^*, d_X : X^* \otimes X \to 1\)
- **compatibility**...
First Example

Example

\(\mathcal{V} \) the category of f.d. \(\mathbb{C} \)-vector spaces.

1. \(1 = \mathbb{C} \)
2. \(1 \) is the only simple object: rank 1
3. \(\mathcal{V}^* \otimes \mathcal{V} \overset{d_\mathcal{V}}{\to} 1: \ d_\mathcal{V}(f \otimes v) = f(v) \)
4. \(1 \overset{b_\mathcal{V}}{\to} \mathcal{V} \otimes \mathcal{V}^*: \ b_\mathcal{V}(x) = x \sum_j v_j \otimes v^j \)
Braiding and Twists

Definition

A **braided** fusion (BF) category has isomorphisms:

\[c_{X,Y} : X \otimes Y \rightarrow Y \otimes X \]

satisfying, e.g.,

\[c_{X,Y \otimes Z} = (\text{Id}_Y \otimes c_{X,Z})(c_{X,Y} \otimes \text{Id}_Z) \]

Definition

A **ribbon** category has compatible \(\ast \) and \(c_{X,Y} \). Encoded in “twists” \(\theta_X : X \rightarrow X \) inducing \(V \cong V^{**} \).
The Braid Group

Definition

\mathcal{B}_n has generators σ_i, $i = 1, \ldots, n - 1$ satisfying:

\[
\begin{align*}
\sigma_i \sigma_{i+1} \sigma_i &= \sigma_{i+1} \sigma_i \sigma_{i+1} \\
\sigma_i \sigma_j &= \sigma_j \sigma_i \quad \text{if} \quad |i - j| > 1
\end{align*}
\]
Braid Group Representations

Fact

Braiding on C induces:

$$\Psi_X : \mathcal{CB}_n \rightarrow \text{End}(X \otimes^n)$$

$$\sigma_i \rightarrow \text{Id}_X^{\otimes i-1} \otimes c_X, X \otimes \text{Id}_X^{\otimes n-i-1}$$

- X is not always a vector space
- $\text{End}(X \otimes^n)$ semisimple algebra (multi-matrix).
- simple $\text{End}(X \otimes^n)$-mods $V_k = \text{Hom}(X \otimes^n, X_k)$ become \mathcal{B}_n reps.
Ribbon categories have:

- Consistent \textit{graphical calculus}: braiding, twists, duality maps represented by pieces of knot projections
- Canonical trace: $\text{tr}_\mathcal{C} : \text{End}(X) \rightarrow \mathbb{C} = \text{End}(1)$
- $\text{tr}_\mathcal{C}(\text{Id}_X) := \dim(X) \in \mathbb{R}^\times$ (generally not in $\mathbb{Z}_{\geq 0}$).
- Invariants of links: given L with each component labelled by an object X find a braid $\beta \in \mathcal{B}_n$ s.t. $\hat{\beta} = L$ then $K_X(L) := \text{tr}_\mathcal{C}(\Psi_X(\beta))$.

\textbf{Definition}

Let $S_{i,j} = \text{tr}_\mathcal{C}(c_{x_j,x_i}c_{x_i,x_j})$, $0 \leq i,j \leq m - 1$. \mathcal{C} is \textit{modular} if $\det(S) \neq 0$.
Grothendieck Semiring

Definition

Gr(C) := ($Obj(C)$, \oplus, \otimes, 1) a unital based ring, with basis $\{X_i\}_i$.

- Define matrices

 \[(N_i)_{k,j} := \dim \text{Hom}(X_i \otimes X_j, X_k)\]

 So: $X_i \otimes X_j = \bigoplus_{k=0}^{m-1} N_{i,j}^k X_k$

- Rep. $\varphi: Gr(C) \to \text{Mat}_m(\mathbb{Z})$

 $\varphi(X_i) = N_i$

- Respects duals: $\varphi(X^*) = \varphi(X)^T$ (self-dual \Rightarrow symmetric)

- If C is braided, $Gr(C)$ is commutative
Frobenius-Perron Dimensions

Definition

- \(\text{FPdim}(X) \) is the largest eigenvalue of \(\varphi(X) \)
- \(\text{FPdim}(\mathcal{C}) := \sum_{i=0}^{m-1} \text{FPdim}(X_i)^2 \)

(a) \(\text{FPdim}(X) > 0 \)
(b) \(\text{FPdim} : Gr(\mathcal{C}) \to \mathbb{C} \) is a unital homomorphism
(c) \(\text{FPdim} \) is unique with (a) and (b).

If \(\text{FPdim}(X) = \text{dim}(X) \) for all \(X \), \(\mathcal{C} \) is pseudo-unitary.
Integrality

Definition

\(\mathcal{C} \) is

- integral if \(\text{FPdim}(X) \in \mathbb{Z} \) for all \(X \)
- weakly integral if \(\text{FPdim}(\mathcal{C}) \in \mathbb{Z} \)
Example

Let G be a finite group. $\text{Rep}(G)$ category of f.d. \mathbb{C} reps. of G is ribbon (not modular).

- $\text{FPdim}(V) = \dim_{\mathbb{C}}(V)$.
- $Gr(\text{Rep}(G))$ is the representation ring.
- Let $\{V_i\}$ be the irreps. $x_i := \dim(V_i)$, $V_0 = \mathbb{C}$ trivial rep.
-
\[
S = \begin{pmatrix}
1 & x_1 & \cdots & x_m \\
x_1 & \ddots & \cdots & x_1 x_m \\
\vdots & \vdots & \ddots & \vdots \\
x_m & x_m x_1 & \cdots & x_m^2
\end{pmatrix}
\]

$\det(S) = 0$ (rank 1 in fact).

- twists: $\theta_i = 1$ for all i.

Eric Rowell
Modular Categories and Applications I
Some Sources of Modular Categories

Example

Quantum group $U = U_q\mathfrak{g}$ with $q = e^{\pi i / \ell}$.
- subcategory of *tilting modules* $\mathcal{T} \subset \text{Rep}(U)$
- quotient $C(\mathfrak{g}, \ell)$ of \mathcal{T} by *negligible morphisms* is (often) modular.

Example

G a finite group, ω a 3-cocycle
- semisimple quasi-triangular quasi-Hopf algebra $D^\omega G$
- $\text{Rep}(D^\omega G)$ is modular, and integral.

Conjecture (Folk)

All modular categories come from these 2 families.
Example (Fibonacci)

quantum group category $C(g_2, 15)$

- Rank 2: simple objects $\mathbf{1}, X$
- $\text{FPdim}(X) = \tau = \frac{1 + \sqrt{5}}{2}$
- $S = \begin{pmatrix} 1 & \tau \\ \tau & -1 \end{pmatrix}$
- $\theta_0 = 1$, $\theta_X = e^{4\pi i / 5}$
- $X \otimes X = \mathbf{1} + X$
Dictionary

<table>
<thead>
<tr>
<th>Categories</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple objects X_i</td>
<td>Indecomposable particle types t_i</td>
</tr>
<tr>
<td>$\mathbf{1}$</td>
<td>vacuum type</td>
</tr>
<tr>
<td>dual objects X^*</td>
<td>Antiparticles</td>
</tr>
<tr>
<td>$\text{End}(X)$</td>
<td>State space</td>
</tr>
<tr>
<td>$c_{X,Y}$</td>
<td>particle exchange</td>
</tr>
<tr>
<td>$\det(S) \neq 0$</td>
<td>particle types distinguishable</td>
</tr>
<tr>
<td>$X_i \otimes X_j = \bigoplus_k N_{i,j}^k X_k$</td>
<td>fusion channels $t_i \ast t_j \rightarrow t_k$</td>
</tr>
<tr>
<td>$\frac{N_{i,j}^k \dim(X_k)}{\dim(X_i) \dim(X_j)}$</td>
<td>$\text{Prob}(t_i \ast t_j \rightarrow t_k)$?</td>
</tr>
</tbody>
</table>
Landscape of Modular Categories

Question

- Are there “exotic” (not quantum group or Hopf algebra) modular categories?
- How many modular categories are there?
- Can we characterize the braid group images?

We focus on 2 and 3.
General Problem

Problem

Classify all modular categories, up to equivalence.

- For physicists: a classification of algebraic models for FQH liquids
- For topologists: a classification of (most? all?) quantum link invariants
- For algebraists: a classification of (all?) factorizable Hopf algebras.
- would include a classification of finite groups...too ambitious!
Wang’s Conjecture

Conjecture

Fix \(m \geq 1 \). There are finitely many modular categories of rank \(m \).

Only verified in the following situations:

- \(m \leq 4 \)
- \(\mathcal{C} \) is weakly integral.
- \(\text{FPdim}(\mathcal{C}) \) (hence \(\text{FPdim}(X_i) \) and \(N^{k}_{i,j} \)) bounded.

\(m = 2 \): true for fusion cats., \(m = 3 \): true for ribbon cats.
Theorem (Ocneanu Rigidity)

Fix a unital based ring R. There are at most finitely many (fusion, ribbon) modular categories \mathcal{C} with $Gr(\mathcal{C}) \cong R$.

Up to finite ambiguity, enough consider:

Problem

Classify all unital based rings R such that $R \cong Gr(\mathcal{C})$ for some modular category \mathcal{C}.

Definition

\mathcal{C} and \mathcal{D} are Grothendieck equivalent if $Gr(\mathcal{C}) \cong Gr(\mathcal{D})$.
More Modest Goal

Problem

Classify modular categories:

- that are pseudo-unitary (so \(\dim(X_i) \geq 1 \))
- up to Grothendieck equivalence
- for small ranks \(m \) (say \(\leq 12 \)).
For each simple $X_i \in \mathcal{C}$ define a graph G_i:

Vertices: simple objects X_j

(directed) Edges: $N_{i,j}^k$ edges from X_j to X_k.

undirected if $N_{i,j}^k = N_{i,k}^j$ (e.g. if self-dual)
[R,Stong,Wang ’09]. Determined (up to Gr. semiring) by a single fusion graph:
Non-self-dual: Rank 5

Assume $X \not\cong X^*$ for at least one X.
Determined by:
Proposition

Assume \(C \) is an integral modular category of rank \(\leq 6 \). Then \(C \) is either:

1. pointed (\(\text{FPdim}(X_i) = 1 \) for simple \(X_i \)) or
2. \(\text{Gr}(C) \cong \text{Gr}(\text{Rep}(DG)) \) (\(\text{FPdim}(C) = 36 \)).

Follows from [Naidu,R] and computer search.
Let \mathcal{C} be any braided fusion category.

Question

Given X and n, what is $\Psi_X(B_n)$?

- (F) Is it finite or infinite?
- (U) If unitary and infinite, what is $\overline{\Psi_X(B_n)}$?

see [Freedman,Larsen,Wang '02], [Larsen,R,Wang '05]

- (M) If finite, what are minimal quotients?

see [Larsen,R. '08 AGT]

For example:

- (U): typically $\overline{\Psi_X(B_n)} \supset \prod_k SU(V_k)$, V_k irred. subreps.
- (M): $n \geq 5$ solvable $\Psi_X(B_n)$ implies abelian.
Say \(\mathcal{C} \) has property \(\textbf{F} \) if \(|\Psi_X(B_n)| < \infty \) for all \(X \) and \(n \).
Examples

<table>
<thead>
<tr>
<th></th>
<th>$C(\mathfrak{sl}_2, 4)$</th>
<th>$C(\mathfrak{g}_2, 15)$</th>
<th>$\text{Rep}(DS_3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>rank</td>
<td>3</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>FPdim(X_i)</td>
<td>$\sqrt{2}$</td>
<td>$\frac{1+\sqrt{5}}{2}$</td>
<td>2, 3</td>
</tr>
<tr>
<td>Prop. F?</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Conjecture

A braided fusion category \mathcal{C} has property \mathbf{F} if and only if it is weakly integral ($\mathrm{FPdim}(\mathcal{C}) \in \mathbb{Z}$).

- Clear for **pointed** categories ($\mathrm{FPdim}(X_i) = 1$)
- E.g.: does $\text{Rep}(H)$ have prop. \mathbf{F} for H f.d., s.s., quasi-\triangle, quasi-Hopf alg.?
Recall: C ribbon, $X \in C$, L a link: get invariant $K_X(L)$.

Question

Is computing (randomized approximation) $K_X(L)$ easy: FPRASable or hard: \#P-hard, not FPRASable, assuming $P \neq NP$?

Appears to coincide with: Is $\Psi_X(\mathcal{B}_n)$ finite or infinite? Related to topological quantum computers: weak or powerful?
Lie Types A and C

Proposition (Jones '86, Freedman,Larsen,Wang '02)

$\mathcal{C}(\mathfrak{sl}_k, \ell)$ has property F if and only if $\ell \in \{2, 3, 4, 6\}$.

Proposition (Jones '89, Larsen,R,Wang '05)

$\mathcal{C}(\mathfrak{sp}_{2k}, \ell)$ has property F if and only if $\ell = 10$ and $k = 2$.

Only weakly integral in these cases

$$(\text{FPdim}(X_i) \in \{1, \sqrt{2}, \sqrt{3}, 2, \sqrt{5}, 3\})$$.
Proposition (Etingof, R, Witherspoon)

\[\text{Rep}(D^\omega G) \text{ has property } F \text{ for any } \omega, G. \]

Recall: \(\text{Rep}(D^\omega G) \) is integral.
Integral, Low-dimension

Proposition (Naidu,R)

Suppose C is an integral modular category with $\text{FPdim}(C) < 36$. Then C has property F.
Intermission...

Thank you!