7.1: Areas Between Curves

One of interpretations of definite integral

$$
\int_{a}^{b} f(x) \mathrm{d} x, \quad f(x) \geq 0 \quad \text { on } \quad[a, b]
$$

is the area between the graph of $y=f(x)$ and the x-axis on $[a, b]$.

For example, if $f(x)=\cos x$ and $x \in\left[0, \frac{\pi}{2}\right]$ then

If $f(x) \geq 0$ on $[a, b]$ then $\int_{a}^{b} f(x) \mathrm{d} x$
If $f(x) \leq 0$ on $[a, b]$ then $\int_{a}^{b} f(x) \mathrm{d} x$
The previous example on $\left[0, \frac{2 \pi}{3}\right]$:

Our goal: Find the area between two curves.

CASE I. Determine the area between $y=f(x)$ and $y=g(x)$ on the interval $[a, b]$ assuming $f(x) \geq g(x)$ on $[a, b]$.

I other words, find the area of the region D defined by

Solution:

$$
A=A(D)=\int_{a}^{b} f(x)-g(x) \mathrm{d} x
$$

Explanation:

CASE II. Determine the area between $x=f(y)$ and $x=g(y)$ on the interval $[c, d]$ assuming $f(y) \geq g(y)$ on $[c, d]$.

I other words, find the area of the region D defined by

Solution:

$$
A=A(D)=\int_{c}^{d} f(y)-g(y) \mathrm{d} y
$$

The above formulas in the "word" form:
CASE I $A=\int_{a}^{b}\binom{$ upper }{ function }$-\binom{$ lower }{ function } $\mathrm{d} x$
CASE II $A=\int_{c}^{d}\binom{$ right }{ function }$-\binom{$ left }{ function } $\mathrm{d} y$
Coming back to the previous example: $f(x)=\cos x$, where $0 \leq x \leq 2 \pi / 3$ we get:

EXAMPLE 1. Determine the area of the region enclosed (=bounded by) by $y=x^{2}$ and $y=\sqrt{x}$.

REMARK 2. 1. The limits of integration in the above example were determined as the intersection points of the two curves.
2. Sketch of a graph of the region is recommended (it helps to determine which of the functions is upper/right).
3. The area between two curves will always be \qquad
EXAMPLE 3. Determine the area of the region bounded by $y=\frac{1}{x}$ and $y=-1, x=1, x=3$.

y	
0	x

EXAMPLE 4. Determine the area of the region bounded by $y=2 x^{2}+4$ and $y=4 x+10$.

EXAMPLE 5. Determine the area of the region bounded by $y=2 x^{2}+4$ and $y=4 x+10, x=-2$, $x=5$.

EXAMPLE 6. Determine the area of the region enclosed by $y=\sin x, y=\sin 2 x, x=0, x=\pi / 2$.

EXAMPLE 7. Determine the area of the region enclosed by $x=\frac{1}{2} y^{2}-3, y=x-1$.

EXAMPLE 8. Determine the area of the region bounded by the x-axis, the curve $y=x^{2}$ and tangent line to this curve at the point $(1,1)$.

