
7.1: Areas Between Curves

One of interpretations of definite integral

$$\int_{a}^{b} f(x) \, \mathrm{d}x, \quad f(x) \ge 0 \quad \text{on} \quad [a, b]$$

is the area between the graph of y = f(x) and the x-axis on [a, b].

For example, if $f(x) = \cos x$ and $x \in [0, \frac{\pi}{2}]$ then

If
$$f(x) \ge 0$$
 on $[a, b]$ then $\int_{a}^{b} f(x) dx$
If $f(x) \le 0$ on $[a, b]$ then $\int_{a}^{b} f(x) dx$
The previous example on $[0, \frac{2\pi}{3}]$:

Our goal: Find the area between two curves.

CASE I. Determine the area between y = f(x) and y = g(x) on the interval [a, b] assuming $f(x) \ge g(x)$ on [a, b].

I other words, find the area of the region D defined by

Solution:

$$A = A(D) = \int_{a}^{b} f(x) - g(x) \,\mathrm{d}x$$

Explanation:

CASE II. Determine the area between x = f(y) and x = g(y) on the interval [c, d] assuming $f(y) \ge g(y)$ on [c, d].

I other words, find the area of the region D defined by

Solution:

$$A = A(D) = \int_{c}^{d} f(y) - g(y) \,\mathrm{d}y$$

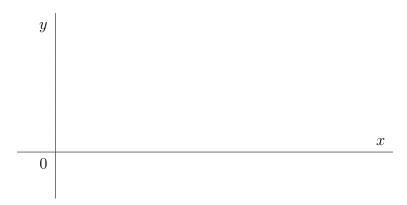
The above formulas in the "word" form:

CASE I
$$A = \int_{a}^{b} \begin{pmatrix} \text{upper} \\ \text{function} \end{pmatrix} - \begin{pmatrix} \text{lower} \\ \text{function} \end{pmatrix} dx$$

CASE II $A = \int_{c}^{d} \begin{pmatrix} \text{right} \\ \text{function} \end{pmatrix} - \begin{pmatrix} \text{left} \\ \text{function} \end{pmatrix} dy$

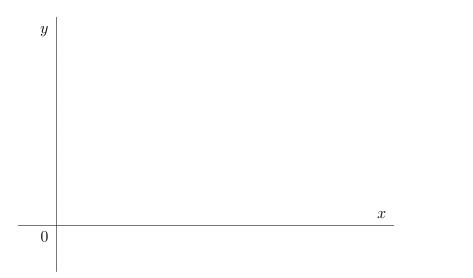
Coming back to the previous example: $f(x) = \cos x$, where $0 \le x \le 2\pi/3$ we get:

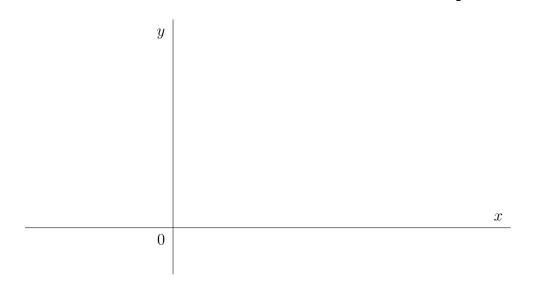
EXAMPLE 1. Determine the area of the region enclosed (=bounded by) by $y = x^2$ and $y = \sqrt{x}$.

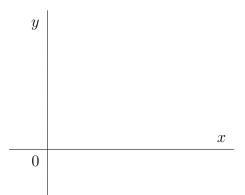

- REMARK 2. 1. The limits of integration in the above example were determined as the intersection points of the two curves.
 - 2. Sketch of a graph of the region is recommended (it helps to determine which of the functions is upper/right).

3. The area between two curves will always be _____


EXAMPLE 3. Determine the area of the region bounded by $y = \frac{1}{x}$ and y = -1, x = 1, x = 3.


EXAMPLE 4. Determine the area of the region bounded by $y = 2x^2 + 4$ and y = 4x + 10.


EXAMPLE 5. Determine the area of the region bounded by $y = 2x^2 + 4$ and y = 4x + 10, x = -2, x = 5.


EXAMPLE 6. Determine the area of the region enclosed by $y = \sin x$, $y = \sin 2x$, x = 0, $x = \pi/2$.

EXAMPLE 7. Determine the area of the region enclosed by $x = \frac{1}{2}y^2 - 3$, y = x - 1.

EXAMPLE 8. Determine the area of the region bounded by the x-axis, the curve $y = x^2$ and tangent line to this curve at the point (1, 1).

