7.2: VOLUME

Δ	simple	tyme	α f	solid.	right	cylinder
Α	simple	type	OI	sona.	$_{\rm Hgm}$	cymaer

Let S be any solid. The intersection of S with a plane is a plane region that is called a **cross-section** of S.

 P_x ia a plane perpendicular to x-axis and passing through x.

A(x) is the area of cross-section obtained as intersection of S and P_x , $a \le x \le b$.

(Think of slicing a loaf of bread.)

DEFINITION 1. Let S be a solid that lies between the planes P_a and P_b . Then the volume of S is

$$V = \lim_{\|P\| \to 0} \sum_{i=1}^{n} A(x_i^*) \Delta x_i =$$

Important to remember: A(x) is the area of a moving cross-section obtained by slicing through x perpendicular to the x-axis.

EXAMPLE 2. Find the volume of the cap of a ball with radius 3 and height 1.

Volumes of Solids of Revolution (Disk Method)

Consider the plane region D bounded by the curves y = f(x), y = 0, x = a, x = b, i.e.

$$D =$$

Rotate D about a given axis to get the **solid of revolution** S:

PROBLEM: Determine the volume of solid of revolution.

Solution: Using cross-sectional areas (disk method)

EXAMPLE 3. Determine the volume of the solid obtained by rotating the region

$$D = \{(x, y) : 1 \le x \le 4, 0 \le y \le x^2 - 4x + 5\}$$

about the x-axis.

EXAMPLE 4. Determine the volume of the solid obtained by rotating the region enclosed by $y = x^3$, y = 8, x = 0 about the y-axis.

EXAMPLE 5. Determine the volume of the solid obtained by rotating the region enclosed by $y = \ln x$, y = 0, y = 5 x = 0 about the y-axis.

EXAMPLE 6. Determine the volume of the solid obtained by rotating the region enclosed by the curves $y = \sqrt[3]{x}$, x = 8, y = 0 about the line x = 8.

EXAMPLE 7. Determine the volume of the solid obtained by rotating the region enclosed by $y = \tan x$, y = 1 and the y-axis about the line y = 1.

$SUMMARY\ (Disk\ Method)$

- Rotation about a horizontal axis (y = k): $V = \int_a^b A(x) dx$
- Rotation about a vertical axis (x = k): $V = \int_a^b A(y) dy$
- Cross sections are orthogonal to the axis of rotating.

Washer Method

Use it when the cross-sections orthogonal to the axis of rotating of a solid of revolution are in the shape of a washer (ring).

The area of a ring:

EXAMPLE 8. Let D be the plane region that lies in the first quadrant and enclosed by $y = \sqrt[3]{x}$ and $y = \frac{x}{4}$.

(a) Determine the volume of the solid obtained by rotating the region D about the y-axis.

(b) Determine the volume of the solid obtained by rotating the region D about the x-axis.

EXAMPLE 9. Let D be the region enclosed by y = x and $y = x^2$.

(a) Determine the volume of the solid obtained by rotating the region D about the line x = -1.

(b) Determine the volume of the solid obtained by rotating the region D about the line y = 2.

More general case: Cross Sections other than Circles

Use the basic formula:

$$V = \int_{a}^{b} A(x) \, \mathrm{d}x$$

EXAMPLE 10. Find the volume of the solid whose base is a disk with radius 5 and the cross sections perpendicular to the y-axis are equilateral triangles.

EXAMPLE 11. The base of the solid S is the triangular region with the vertices (0,0), (1,0) and (0,1). Find the volume of S if the cross sections perpendicular to the x-axis are semicircles with diameters on the base.