7.2: VOLUME

A simple type of solid: right cylinder

Let S be any solid. The intersection of S with a plane is a plane region that is called a cross-section of S.
P_{x} ia a plane perpendicular to x-axis and passing through x.
$A(x)$ is the area of cross-section obtained as intersection of S and $P_{x}, a \leq x \leq b$.
(Think of slicing a loaf of bread.)

DEFINITION 1. Let S be a solid that lies between the planes P_{a} and P_{b}. Then the volume of S is

$$
V=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} A\left(x_{i}^{*}\right) \Delta x_{i}=
$$

Important to remember: $A(x)$ is the area of a moving cross-section obtained by slicing through x perpendicular to the x-axis.

EXAMPLE 2. Find the volume of the cap of a ball with radius 3 and height 1.

Volumes of Solids of Revolution (Disk Method)

Consider the plane region D bounded by the curves $y=f(x), y=0, x=a, x=b$, i.e.

$$
D=
$$

Rotate D about a given axis to get the solid of revolution S :

PROBLEM: Determine the volume of solid of revolution.
Solution: Using cross-sectional areas (disk method)

EXAMPLE 3. Determine the volume of the solid obtained by rotating the region

$$
D=\left\{(x, y): 1 \leq x \leq 4,0 \leq y \leq x^{2}-4 x+5\right\}
$$

about the x-axis.

EXAMPLE 4. Determine the volume of the solid obtained by rotating the region enclosed by $y=x^{3}, y=8, x=0$ about the y-axis.

EXAMPLE 5. Determine the volume of the solid obtained by rotating the region enclosed by $y=\ln x, y=0, y=5 x=0$ about the y-axis.

EXAMPLE 6. Determine the volume of the solid obtained by rotating the region enclosed by the curves $y=\sqrt[3]{x}, x=8, y=0$ about the line $x=8$.

EXAMPLE 7. Determine the volume of the solid obtained by rotating the region enclosed by $y=\tan x, y=1$ and the y-axis about the line $y=1$.

SUMMARY (Disk Method)

- Rotation about a horizontal axis $(y=k): V=\int_{a}^{b} A(x) \mathrm{d} x$
- Rotation about a vertical axis $(x=k): V=\int_{a}^{b} A(y) \mathrm{d} y$
- Cross sections are orthogonal to the axis of rotating.

Washer Method

Use it when the cross-sections orthogonal to the axis of rotating of a solid of revolution are in the shape of a washer (ring).

The area of a ring:

EXAMPLE 8. Let D be the plane region that lies in the first quadrant and enclosed by $y=\sqrt[3]{x}$ and $y=\frac{x}{4}$.
(a) Determine the volume of the solid obtained by rotating the region D about the y-axis.

(b) Determine the volume of the solid obtained by rotating the region D about the x-axis.

EXAMPLE 9. Let D be the region enclosed by $y=x$ and $y=x^{2}$.
(a) Determine the volume of the solid obtained by rotating the region D about the line $x=-1$.

(b) Determine the volume of the solid obtained by rotating the region D about the line $y=2$.

More general case: Cross Sections other than Circles

Use the basic formula:

$$
V=\int_{a}^{b} A(x) \mathrm{d} x
$$

EXAMPLE 10. Find the volume of the solid whose base is a disk with radius 5 and the cross sections perpendicular to the y-axis are equilateral triangles.

EXAMPLE 11. The base of the solid S is the triangular region with the vertices $(0,0),(1,0)$ and $(0,1)$. Find the volume of S if the cross sections perpendicular to the x-axis are semicircles with diameters on the base.

