10.1: Sequences

A sequence is a list of numbers written in a definite order.
General sequence terms are denotes as follows:

$$
\begin{array}{cccc}
a_{1} & - & \text { first } & \text { term } \\
a_{2} & - & \text { second } & \text { term } \\
& \vdots & & \\
a_{n} & - & n^{\text {th }} & \text { term } \\
a_{n+1} & - & (n+1)^{\text {th }} & \text { term }
\end{array}
$$

Notice that, in general, $a_{n+1} \neq a_{n}+1$.
A sequence can be defined as a function whose domain is the set of positive integers:

NOTATION: $\left\{a_{1}, a_{2}, \ldots, a_{n}, a_{n+1}, \ldots\right\}, \quad\left\{a_{n}\right\}, \quad\left\{a_{n}\right\}_{n=1}^{\infty}$.
EXAMPLE 1. Write down the first few terms of the following sequences:
(a) $\left\{\frac{n+1}{n^{2}}\right\}_{n=1}^{\infty}$
(b) $\left\{\frac{(-1)^{n+1}}{2^{n}}\right\}_{n=0}^{\infty}$
(c) The Fibonacci sequence $\left\{f_{n}\right\}$ is defined recursively:

$$
f_{1}=1, \quad f_{2}=1, \quad f_{n}=f_{n-1}+f_{n-2}, \quad n \geq 3
$$

EXAMPLE 2. Find a general formula for the sequence:
(a) $\frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \frac{1}{11}, \ldots$
(b) $-\frac{1}{4}, \frac{1}{9},-\frac{1}{16}, \frac{1}{25}, \ldots$

DEFINITION 3. If $\lim _{n \rightarrow \infty} a_{n}$ exists then we say that the sequence $\left\{a_{n}\right\}$ converges (or is convergent.) Otherwise, we say the sequence $\left\{a_{n}\right\}$ diverges (or is divergent.)

Graphs of two sequences with $\lim _{n \rightarrow \infty} a_{n}=L$.

THEOREM 4. If $\lim _{x \rightarrow \infty} f(x)=L$ and $f(n)=a_{n}$, then $\lim _{n \rightarrow \infty} a_{n}=L$.

Limit laws for convergent sequences

THEOREM 5. Suppose that c is a constant and the limits

$$
\lim _{n \rightarrow \infty} a_{n} \quad \text { and } \quad \lim _{n \rightarrow \infty} b_{n}
$$

exist. Then

1. $\lim _{n \rightarrow \infty}\left[a_{n} \pm b_{n}\right]=\lim _{n \rightarrow \infty} a_{n} \pm \lim _{n \rightarrow \infty} b_{n}$
2. $\lim _{n \rightarrow \infty}\left[c a_{n}\right]=c \lim _{n \rightarrow \infty} a_{n}$
3. $\lim _{n \rightarrow \infty}\left[a_{n} b_{n}\right]=\lim _{n \rightarrow \infty} a_{n} \lim _{n \rightarrow \infty} b_{n}$
4. $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$ if $\quad \lim _{n \rightarrow \infty} b_{n} \neq 0$
5. $\lim _{n \rightarrow \infty} c=c$

THEOREM 6. (The Squeeze Theorem) If $a_{n} \leq b_{n} \leq c_{n}$ for $n \geq n_{0}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$.

Since $-\left|a_{n}\right| \leq a_{n} \leq\left|a_{n}\right|$, we get
COROLLARY 7. If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

EXAMPLE 8. Determine if $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges or diverges. If converges, find its limit.
(a) $a_{n}=\frac{n+1}{2 n+3}$
(b) $a_{n}=\frac{3 n^{2}-1}{10 n+5 n^{2}}$
(c) $a_{n}=\arctan (2 n)$
(d) $a_{n}=\ln (2 n+4)-\ln n$
(e) $a_{n}=\cos (2 \pi n)$
(f) $b_{n}=\cos \frac{\pi n}{2}$
(g) $a_{n}=\frac{3+(-1)^{n}}{n^{2}}$

EXAMPLE 9. For what values of r does the sequence $\left\{r^{n}\right\}$ converges. For these values of r find $\lim _{n \rightarrow \infty} r^{n}$.

DEFINITION 10. A sequence $\left\{a_{n}\right\}$ is bounded above if there is a number M s.t.

$$
a_{n} \leq M \quad \text { for all } n .
$$

A sequence $\left\{a_{n}\right\}$ is bounded below if there is a number m s.t.

$$
m \leq a_{n} \quad \text { for all } n
$$

If its bounded above and below, then a_{n} is a bounded sequence.

Positive bounded above sequence is \qquad
DEFINITION 11. A sequence $\left\{a_{n}\right\}$ is increasing if

$$
a_{n}<a_{n+1} \quad \text { for all } n .
$$

A sequence $\left\{a_{n}\right\}$ is decreasing if

$$
a_{n}>a_{n+1} \quad \text { for all } n .
$$

A sequence is monotonic if it is either increasing or decreasing.

THEOREM 12. MONOTONIC SEQUENCE THEOREM. Every bounded, monotonic sequence is convergent.

EXAMPLE 13. Determine whether $\left\{a_{n}\right\}$ is increasing, decreasing or not monotonic. Then determine if $\left\{a_{n}\right\}$ is bounded.
(a) $a_{n}=-n^{2}$
(b) $\left\{\frac{2}{n^{2}}\right\}_{n=5}^{\infty}$

EXAMPLE 14. Consider the sequence defined by $a_{1}=1, a_{n+1}=\frac{1}{3-a_{n}}$. Find the first five terms of this sequence. Then Find the limit of the sequence.

