10.2: SERIES

A series is a sum of sequence:

$$
\sum_{k=1}^{\infty} a_{k}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}+\ldots
$$

a_{k} is called a general (common) term of the given series. For a given sequence ${ }^{1}\left\{a_{k}\right\}_{k=1}^{\infty}$ define the following:

The s_{n} 's are called partial sums and they form a sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$.
We want to consider the limit of $\left\{s_{n}\right\}_{n=1}^{\infty}$:

If $\left\{s_{n}\right\}_{n=1}^{\infty}$ is convergent and $\lim _{n \rightarrow \infty} s_{n}=s$ exists as a real number, then the series $\sum_{k=1}^{n} a_{k}$ is convergent. The number s is called the sum of the series. ${ }^{2}$

If $\left\{s_{n}\right\}_{n=1}^{\infty}$ is divergent then the series $\sum_{k=1}^{\infty} a_{k}$ is divergent.
${ }^{1} k=1$ for convenience, it can be anything
${ }^{2}$ When we write $\sum_{k=1}^{n} a_{k}=s$ we mean that by adding sufficiently many terms of the series we can get as close as we like to the number s.

GEOMETRIC SERIES

$$
a+a r+a r^{2}+\ldots+a r^{n-1}+\ldots \quad(a \neq 0)
$$

Each term is obtained from the preceding one by multiplying it by the common ratio r.
THEOREM 1. The geometric series is convergent if $|r|<1$ and its sum is

$$
\sum_{n=1}^{\infty} a r^{n-1}=\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}
$$

If $|r| \geq 1$, the geometric series is divergent.
Proof.

EXAMPLE 2. Determine whether the following series converges or diverges. If it is converges, find the sum. If it is diverges, explain why.
(a) $\sum_{n=1}^{\infty} 5 \cdot\left(\frac{2}{7}\right)^{n}$
(b) $\sum_{n=0}^{\infty} \frac{(-4)^{3 n}}{5^{n-1}}$
(c) $1-\frac{3}{2}+\frac{9}{4}-\frac{27}{8}+\ldots$

TELESCOPING SUM

Let b_{n} be a given sequence. Consider the following series:
$\sum_{n=1}^{\infty}\left(b_{n}-b_{n+1}\right)$

EXAMPLE 3. Determine whether the following series converges or diverges. If it is converges, find the sum. If it is diverges, explain why.
(a) $\sum_{n=1}^{\infty}\left(\sin \frac{1}{n}-\sin \frac{1}{n+1}\right)$
(b) $\sum_{n=1}^{\infty} \ln \frac{n+1}{n+2}$
(c) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$

THEOREM 4. If the series $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$.
REMARK 5. The converse is not necessarily true.
THE TEST FOR DIVERGENCE:
If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
REMARK 6. If you find that $\lim _{n \rightarrow \infty} a_{n}=0$ then the Divergence Test fails and thus another test must be applied.

EXAMPLE 7. Use the test for Divergence to determine whether the series diverges.
(a) $\sum_{n=1}^{\infty} \frac{n^{2}}{3(n+1)(n+2)}$
(b) $\sum_{n=1}^{\infty} \cos \frac{\pi n}{2}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$

THEOREM 8. If $\sum_{k=1}^{n} a_{n}$ and $\sum_{k=1}^{n} b_{n}$ are convergent series, then so are the series $\sum_{k=1}^{n} c a_{n}$ (where
c is a constant), $\sum_{k=1}^{n}\left(a_{n}+b_{n}\right)$, and $\sum_{k=1}^{n}\left(a_{n}-b_{n}\right)$, and

$$
\sum_{k=1}^{n} c a_{n}=c \sum_{k=1}^{n} a_{n}, \quad \sum_{k=1}^{n}\left(a_{n}+b_{n}\right)=\sum_{k=1}^{n} a_{n}+\sum_{k=1}^{n} b_{n}, \quad \sum_{k=1}^{n}\left(a_{n}-b_{n}\right)=\sum_{k=1}^{n} a_{n}-\sum_{k=1}^{n} b_{n}
$$

EXAMPLE 9. Determine whether the following series converges or diverges. If it is converges, find its sum.

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n(n+1)}+5 \cdot\left(\frac{2}{7}\right)^{n}\right)
$$

