10.2: SERIES

A series is a sum of sequence:

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \ldots + a_n + \ldots$$

 a_k is called a general (common) term of the given series. For a given sequence¹ $\{a_k\}_{k=1}^{\infty}$ define the following:

The s_n 's are called **partial sums** and they form a sequence $\{s_n\}_{n=1}^{\infty}$. We want to consider the limit of $\{s_n\}_{n=1}^{\infty}$:

If $\{s_n\}_{n=1}^{\infty}$ is convergent and $\lim_{n\to\infty} s_n = s$ exists as a real number, then the series $\sum_{k=1}^{\infty} a_k$ is *convergent.* The number s is called the **sum** of the series.²

If $\{s_n\}_{n=1}^{\infty}$ is divergent then the series $\sum_{k=1}^{\infty} a_k$ is divergent.

 $^{^{1}}k = 1$ for convenience, it can be anything

²When we write $\sum_{k=1}^{n} a_k = s$ we mean that by adding sufficiently many terms of the series we can get as close as we like to the number s.

GEOMETRIC SERIES

$$a + ar + ar^2 + \ldots + ar^{n-1} + \ldots \qquad (a \neq 0)$$

Each term is obtained from the preceding one by multiplying it by the common ratio r. THEOREM 1. The geometric series is convergent if |r| < 1 and its sum is

$$\sum_{n=1}^{\infty} ar^{n-1} = \sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}.$$

If $|r| \ge 1$, the geometric series is divergent.

Proof.

EXAMPLE 2. Determine whether the following series converges or diverges. If it is converges, find the sum. If it is diverges, explain why.

(a)
$$\sum_{n=1}^{\infty} 5 \cdot \left(\frac{2}{7}\right)^n$$

(b)
$$\sum_{n=0}^{\infty} \frac{(-4)^{3n}}{5^{n-1}}$$

(c)
$$1 - \frac{3}{2} + \frac{9}{4} - \frac{27}{8} + \dots$$

TELESCOPING SUM

Let b_n be a given sequence. Consider the following series:

$$\sum_{n=1}^{\infty} \left(b_n - b_{n+1} \right)$$

EXAMPLE 3. Determine whether the following series converges or diverges. If it is converges, find the sum. If it is diverges, explain why.

(a)
$$\sum_{n=1}^{\infty} \left(\sin \frac{1}{n} - \sin \frac{1}{n+1} \right)$$

(b)
$$\sum_{n=1}^{\infty} \ln \frac{n+1}{n+2}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

THEOREM 4. If the series
$$\sum_{n=1}^{\infty} a_n$$
 is convergent, then $\lim_{n \to \infty} a_n = 0$.

REMARK 5. The converse is not necessarily true.

THE TEST FOR DIVERGENCE:

If $\lim_{n \to \infty} a_n$ does not exist or if $\lim_{n \to \infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

REMARK 6. If you find that $\lim_{n\to\infty} a_n = 0$ then the Divergence Test fails and thus another test must be applied.

EXAMPLE 7. Use the test for Divergence to determine whether the series diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{n^2}{3(n+1)(n+2)}$$

(b)
$$\sum_{n=1}^{\infty} \cos \frac{\pi n}{2}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$

THEOREM 8. If
$$\sum_{k=1}^{n} a_n$$
 and $\sum_{k=1}^{n} b_n$ are convergent series, then so are the series $\sum_{k=1}^{n} ca_n$ (where c is a constant), $\sum_{k=1}^{n} (a_n + b_n)$, and $\sum_{k=1}^{n} (a_n - b_n)$, and $\sum_{k=1}^{n} ca_n = c \sum_{k=1}^{n} a_n$, $\sum_{k=1}^{n} (a_n + b_n) = \sum_{k=1}^{n} a_n + \sum_{k=1}^{n} b_n$, $\sum_{k=1}^{n} (a_n - b_n) = \sum_{k=1}^{n} a_n - \sum_{k=1}^{n} b_n$

EXAMPLE 9. Determine whether the following series converges or diverges. If it is converges, find its sum.

$$\sum_{n=1}^{\infty} \left(\frac{1}{n(n+1)} + 5 \cdot \left(\frac{2}{7}\right)^n \right)$$