10.5: Power Series

DEFINITION 1. A power series about $x=a$ (or centered at $x=a$), or just power series, is any series that can be written in the form

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

where a and c_{n} are numbers. The c_{n} 's are called the coefficients of the power series.
THEOREM 2. For a given power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ there are only 3 possibilities:

1. The series converges only for $x=a$.
2. The series converges for all x.
3. There is $R>0$ such that the series converges if $|x-a|<R$ and diverges if $|x-a|>R$. We call such R the radius of convergence.

REMARK 3. In case 1 of the theorem we say that $R=0$ and in case 2 we say that $R=\infty$
DEFINITION 4. An interval of convergence is the interval of all x 's for which the power series converges.

EXAMPLE 5. Assume that it is known that the series $\sum_{n=0}^{\infty} c_{n}(x+3)^{n}$ converges when $x=-10$ and diverges when $x=6$. What can be said about the convergence or divergence of the following series:

$$
\sum_{n=0}^{\infty} c_{n} 2^{n}
$$

$\sum_{n=0}^{\infty} c_{n}(-11)^{n}$

$$
\sum_{n=0}^{\infty} c_{n} 8^{n}
$$

EXAMPLE 6. Given $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{4^{n}}(x+3)^{n}$.
(a) Find the radius of convergence.
(b) Find the interval of convergence.

EXAMPLE 7. Given $\sum_{n=1}^{\infty} \frac{2^{n}}{n}(3 x-6)^{n}$.
(a) Find the radius of convergence.
(b) Find the interval of convergence.

EXAMPLE 8. Given $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(3 n+1)!}(x+8)^{n}$.
(a) Find the radius of convergence.
(b) Find the interval of convergence.

EXAMPLE 9. Given $\sum_{n=1}^{\infty} \frac{(2 n)!}{9^{n-1}}(x+8)^{n}$.
(a) Find the radius of convergence.
(b) Find the interval of convergence.

