10.6: Representation of Functions as Power Series

Problem: Find the sum of the following series: $\sum_{n=0}^{\infty} x^n$

EXAMPLE 1. Find a power series representation for f(x) and determine the interval of convergence.

(a)
$$f(x) = \frac{1}{5-x}$$

(b)
$$f(x) = \frac{x}{5-x}$$

(c)
$$f(x) = \frac{1}{1+x^2}$$

Differentiation and Integration of power series

THEOREM 2. If the power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ has radius of convergence R > 0, then the function f defined by

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$

is differentiable (and therefore continuous) on the interval (a - R, a + R) and

•
$$f'(x) = \sum_{n=0}^{\infty} nc_n (x-a)^{n-1}$$

• $\int f(x) \, \mathrm{d}x = C + \sum_{n=0}^{\infty} \frac{c_n}{n+1} (x-a)^{n+1}$

The radii of convergence of the power series for f'(x) and $\int f(x) dx$ are both R.

EXAMPLE 3. Find a power series representation for f(x) and determine the radius of convergence.

(a)
$$f(x) = \frac{1}{(5-x)^2}$$

(b)
$$f(x) = \ln(2+x)$$