7.4: Work

PROBLEM: Find the amount of work that is done by a force in moving an object.
Solution:

- Case 1: constant force.

Work W done in moving an object a distance d meters is given by

$$
W=F d
$$

In the SI metric system: $[J]=[N][m]$
In the British engineering system: $[\mathrm{ft}][\mathrm{lb}]$. Also 1 ft - $\mathrm{lb} \approx 1.36 \mathrm{~J}$.
EXAMPLE 1. How much work is done in lifting your Calculus book (2.1kg) off the floor to put it on a desk that is 0.6 m high.

- Case 2: non constant force. (It requires integration.)

Finally, $W=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} F\left(x_{k}^{*}\right) \Delta x_{k}$ where $\|P\|=\max _{k} \Delta x_{k}$. Thus, work done in moving an object from $x=a$ to $x=b$ is

$$
W=\int_{a}^{b} F(x) \mathrm{d} x
$$

EXAMPLE 2. When a particle is at distance x feet from the origin, a force of $3 x^{2}+2 x$ pounds acts on it. How much work is done in moving it from $x=1$ to $x=3$ along the x-axis?

EXAMPLE 3. A spring has a natural length of 1 m . If a 50 N force is required to keep it stretched to a length 3 m , how much work is done in stretching the spring from 2 m to 5 m ?

Solution By Hooke's law the force required to stretch a spring x units beyond its natural length is

EXAMPLE 4. If the work required to stretch a spring 1ft beyond its natural length is 12 ft -lb, how much work is needed to stretch it 9 inches beyond its natural length?

EXAMPLE 5. A tank has a shape of an inverted circular cone with height 10 m and base radius 5 m . It is filled with water to a height of 8 m . Find the work required to empty the tank by pumping all of the water to the top of the tank. (The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.)

EXAMPLE 6. A uniform cable hanging over the edge of a tall building is 20 ft long and weight 30lb. How much work is required to pull 5 ft of the cable to the top?

REMARK 7. The exact height of the building doesn't matter.

