7.5: Average Value of a Function

The average value of finitely many numbers $y_{1}, y_{2}, \ldots, y_{n}$:

The average value of a function $y=f(x)$ over the interval $[a, b]$:

$$
f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x
$$

EXAMPLE 1. Determine the average value of $f(x)=x^{2}-4 x+7 \sin (\pi x)$ over the interval $\left[-\frac{1}{2} ; \frac{1}{2}\right]$.

EXAMPLE 2. The temperature of a metal rod, 10 m long, is $5 x\left(\right.$ in $\left.{ }^{\circ} C\right)$ at a distance x meters from one end of the rod. What is the average temperature of the rod?

MEAN VALUE THEOREM FOR INTEGRALS: If f is continuous on $[a, b]$, then there exists a number c on $[a, b]$ s.t.

$$
\int_{a}^{b} f(x) \mathrm{d} x=f(c)(b-a)
$$

The geometric interpretation of the Mean Value Theorem for Integrals: for positive functions f, there is a number c s.t. the rectangle with base [a, b] and height $f(c)$ has the same area as the region under the graph of f from a to b.

Proof.

EXAMPLE 3. If g is continuous and $\int_{-1}^{7} g(x) \mathrm{d} x=24$ show that g takes on the value 3 at least once on the interval $[-1,7]$.

EXAMPLE 4. Determine the number c that satisfies the Mean Value Theorem for Integrals for the function $f(x)=x^{2}-2 x-2$ on the interval $[1,4]$

