9.2 First-Order Linear Differential Equations

A first order ODE is called linear if it is expressible in the form

$$
\begin{equation*}
y^{\prime}+p(t) y=g(t) \tag{1}
\end{equation*}
$$

where $p(t)$ and $g(t)$ are given functions.
The method to solve (1) for arbitrary $p(t)$ and $q(t)$ is called
The Method of Integrating Factors

The Method of Integrating Factors
Step 1 Put ODE in the form (1).
Step 2 Find the integrating factor

$$
\mu(t)=e^{\int p(t) \mathrm{d} t}
$$

Note: Any μ will suffice here, thus take the constant of integration $C=0$.
Step 3 Multiply both sides of (1) by μ and use the Product Rule for the left side to express the result as

$$
\begin{equation*}
(\mu(t) y(t))^{\prime}=\mu g(x) \tag{2}
\end{equation*}
$$

Step 4 Integrate both sides of (2). Note: Be sure to include the constant of integration in this step!

Step 5 Solve for the solution $y(t)$.

EXAMPLE 1. Solve the following DE: $y^{\prime}-3 x y=-x e^{x^{2}}$.

EXAMPLE 2. Consider $y^{\prime}-2 y=\cos (3 t)$.

1. Find the general solution.
2. Find the solution satisfying the initial condition $y(0)=-2 / 13$.
