9.3: Arc Length

Description of a curve by parametric equations:

$$
x=x(t), \quad y=y(t), \quad \alpha \leq t \leq \beta
$$

EXAMPLE 1. Parameterize the following curves:
(a) $y=\sqrt{1-x^{2}}$
(b) $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
(c) $y=\sin x, 0 \leq x \leq \pi$
(d) $y^{4}=x$
(e) $y=f(x), a \leq x \leq b$
(f) $x=g(y), c \leq y \leq d$

DEFINITION 2. A curve $C: x=x(t), \quad y=y(t), \quad \alpha \leq t \leq \beta$, is called smooth if the derivatives $x^{\prime}(t)$ and $y^{\prime}(t)$ are continuous and not simultaneously zero on $[\alpha, \beta]$.

The length of a smooth curve

$$
C: x=x(t), \quad y=y(t), \quad \alpha \leq t \leq \beta,
$$

assuming that C is traversed exactly once as t increases from α to β is

$$
\int_{\alpha}^{\beta} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} \mathrm{~d} t=: \int_{C} \mathrm{~d} s
$$

where $\mathrm{d} s$ is called differential of the arc length function and

$$
\mathrm{d} s=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} \mathrm{~d} t
$$

EXAMPLE 3. Find the length of the curve

$$
C: x=3 t-t^{3}, \quad y=3 t^{2}, \quad 0 \leq t \leq 2 .
$$

Particular cases for the differential of the arc length function:

$$
\mathrm{d} s=\sqrt{\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}} \mathrm{~d} t
$$

- C is given by $y=f(x), a \leq x \leq b$
- C is given by $x=g(y), c \leq y \leq d$

EXAMPLE 4. Find the arc length of the graph of $y=\ln \cos x$ from $x=0$ to $x=\pi / 4$.

EXAMPLE 5. Find the arc length of the curve $(y-1)^{3}=x^{2}$ from $x=0$ to $x=8$.

EXAMPLE 6. A telephone wire hanging between two poles (at $x=-100$ and $x=100$) takes the shape of a catenary with equation

$$
y=75\left(e^{x / 150}+e^{-x / 150}\right) .
$$

Find the length of the wire.

