Mathematical Reasoning (Part I) 1

Statements

DEFINITION 1. A statement is any declarative sentence² that is either true or false, but not both.

A statement cannot be neither true nor false and it cannot be both true and false.

- 1. The integer 5 is odd.
- 2. The integer 24277151704311 is prime.
- 3. 15 + 7 = 22
- 4. Substitute the number 7 for x.
- 5. What is the derivative of $\cos x$?
- 6. Apple manufactures computers.
- 7. Apple manufactures the world's best computers.
- 8. Did you buy IBM?
- 9. I am telling a lie.
- 10. What happen when Pinocchio says: "My nose will grow now"?
- Set Terminology and Notation (very short introduction³)

DEFINITIONS:

Set is a well-defined collection of objects.

Elements are objects or members of the set.

• Roster notation:

 $A = \{a, b, c, d, e\}$ Read: Set A with elements a, b, c, d, e.

• Indicating a pattern:

 $B = \{a, b, c, ..., z\}$ Read: Set B with elements being the letters of the alphabet.

If a is an element of a set A, we write $a \in A$ that read "a belongs to A." However, if a does not belong to A, we write $a \notin A$.

¹This part is covered in Sections 1.1-1.3 in the textbook.

²i.e. it has both a subject and a verb

³We will study SETS in Chapter 2!

Very common sets:

- R is the set of all *real* numbers;
- $\mathbf{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$, the set of all *integers*;
- $\mathbf{Z}^+ = \{1, 2, 3, \ldots\}$, the set of all positive integers;
- $\mathbf{N} = \{0, 1, 2, 3, \ldots\}$, the set of all *natural* numbers;

Other sets:

- **E** is the set of all *even integers*;
- **O** is the set of all *odd integers*;
- $n\mathbf{Z}$ is the set of all integers multiples of $n \ (n \in \mathbf{Z})$;

An open sentence is any declarative sentence containing one or more variables, each variable representing a value in some prescribing set, called the domain of the variable, and which becomes a statement when values from their respective domains are substituted for these variables.

- 1. P(x): x+5=7
- 2. P(n): n is divisible by 6.

EXAMPLE 2. Discuss $P(x): (x-3)^2 \le 1$ over **Z**.

EXAMPLE 3. Discuss $P(x,y): x^2 + y^2 = 1$ when $x, y \in \mathbf{R}$.

The NEGATION of a Statement

DEFINITION 4. If P is a statement, then the **negation** of P, written $\neg P$ (read "not P"), is the statement "P is false".

Although $\neg P$ could always be expressed as

It is not the case that P.

there are usually better ways to express the statement $\neg P$.

1. P: The integer 77 is even.

- 2. $P: \quad 5^3 = 120 \quad \neg P:$
- 3. P: The absolute value of the real number x is less than 5.

Compound Statements

Logical connectivity	write	read	meaning
Conjunction	$P \wedge Q$	P and Q	Both P and Q are true
Disjunction	$P \lor Q$	P or Q	P is true or Q is true

P: Ben is a student.

Q: Ben is a teaching assistant.

TRUTH TABLES

P	Q	$P \wedge Q$	$Q \wedge P$	$P \lor Q$	$Q \vee P$

EXAMPLE 5. Rewrite the following open sentences (over R) using disjunction or conjunction.

- (a) $P(x): |x| \ge 10$.
- **(b)** P(x): |x| < 10.
- (c) $P(x): |4x+7| \ge 23$.

Implications

DEFINITION 6. Let P and Q be statements. The implication $P \Rightarrow Q$ (read "P implies Q") is the statement "If P is true, then Q is true."

In implication $P \Rightarrow Q$, P is called assumption, or hypothesis, or premise; and Q is called conclusion.

The truth table for implication:

P	Q	$P \Rightarrow Q$
Т	Т	Τ
Т	F	F
F	Т	Т
F	F	Т

EXAMPLE 7. P: You pass the final exam.

Q: You pass the course.

 $P \Rightarrow Q$:

Different ways of expressing $P\Rightarrow Q$:

If P is true, then Q is true.

Q is true if P is true.

P implies Q.

P is true only if Q is true.

Necessary and Sufficient Conditions

 $P \Rightarrow Q$ also can be expressed as

P is sufficient for Q.

or

Q is necessary for P.

Equivalently,

In order for Q to be true it is sufficient that P be true.

or

Q must be true in order to P to be true.

REMARK 8. Note however, if $P \Rightarrow Q$ is true, then it is not necessary that P is true in order for Q to be true. Even if Q is true, P may be false.

Converse

DEFINITION 9. The statement $Q \Rightarrow P$ is called a **converse** of the statement $P \Rightarrow Q$.

EXAMPLE 10. State the converse statement for implication in Example 7.

EXAMPLE 11. P: The function $f(x) = \sin x$ is differentiable everywhere. Q: The function $f(x) = \sin x$ is continuous everywhere.

$$P \Rightarrow Q$$
 $Q \Rightarrow P$

Biconditional "⇔"

For statements P and Q,

$$(P \Rightarrow Q) \land (Q \Rightarrow P)$$

is called the **biconditional** of P and Q and is denoted by $P \Leftrightarrow Q$. The biconditional $P \Leftrightarrow Q$ is stated as

"P is equivalent to Q." or "P if and only if Q." (or "P iff Q.") or as "P is a necessary and sufficient condition for Q."

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$P \Leftrightarrow Q$
Τ	Т			
Т	F			
F	Т			
F	F			

EXAMPLE 12. Complete:

- (a) The biconditional "The number 17 is odd if and only if 57 is prime." is ______.
- (a) The biconditional "The number 24 is even if and only if 17 is prime." is ______.
- (a) The biconditional "The number 17 is even if and only if 24 is prime." is _____.

Tautologies and Contradictions

Tautology: statement that is always true Contradiction: statement that is always false

P	$\neg P$	$P \vee (\neg P)$	$P \wedge (\neg P)$
Т			
F			

Methods to verify tautology/contradiction: truth table and deductive proof.

EXAMPLE 13. Determine whether the following formula for the statements P and Q is a tautology, contradiction, or neither.

$$\neg (P \Rightarrow Q) \Leftrightarrow P \land (\neg Q).$$

Logical Equivalence

DEFINITION 14. Two compound statements are logically equivalent (write "\equiv") if they have the same truth tables, which means they both are true or both are false.

Question: Are the statements $P \Rightarrow Q$ and $Q \Rightarrow P$ logically equivalent?

EXAMPLE 15. Let P and Q be statement forms. Determine whether the compound statements $\neg P \land Q$ and $\neg P \lor Q$ are logically equivalent (i.e. both true or both false).

P	Q		

REMARK 16. Let P and Q be statements. The biconditional $P \Leftrightarrow Q$ is a tautology if and only if P and Q are logically equivalent.

THEOREM 17. For statements P and Q,

$$\neg (P \Rightarrow Q) \equiv P \land (\neg Q).$$

Some Fundamental Properties of Logical Equivalence

THEOREM 18. For the statement forms P, Q and R,

- $\bullet \ \neg (\neg P) \equiv$
- Commutative Laws

$$P \lor Q \equiv$$

$$P \wedge Q \equiv$$

ullet Associative Laws

$$P \lor (Q \lor R) \equiv$$

$$P \wedge (Q \wedge R) \equiv$$

• Distributive Laws

$$P \lor (Q \land R) \equiv$$

$$P \wedge (Q \vee R) \equiv$$

• De Morgan's Laws

$$\neg(P\vee Q)\equiv (\neg P)\wedge (\neg Q)$$

$$\neg (P \land Q) \equiv (\neg P) \lor (\neg Q)$$

Proof. Each part of the theorem is verified by means of a truth table.

P	Q			

Quantified Statements

EXAMPLE 19. Consider the following open sentence:
$$P(n): \ \frac{2n^2+5+(-1)^n}{2} \ \text{is prime}.$$

How to convert this open sentence into a statement?

An open sentence can be made into a statement by using quantifiers.

Universal: $\forall x$ means for all/for every assigned value a of x.

Existential: $\exists x$ means that for some assigned values a of x.

Quantified statements

in symbols	in words
$\forall x \in D, P(x).$	For every $x \in D$, $P(x)$.
	If $x \in D$, then $P(x)$.
$\exists x \in D \ni P(x)$	There exists x such that $P(x)$.

Once a quantifier is applied to a variable, then the variable is called a **bound** variable. The variable that is not bound is called a free variable.

1.	1. The area of a rectangle is its length times its width. Quantifiers:	
2.	2. A triangle may be equilateral. Quantifiers:	
3.	3. $15 - 5 = 10$ Quantifiers:	
4.	4. A real-valued function that is continuous at 0 is not necessary Quantifiers:	ssarily differentiable at 0.
P	AMPLE 20. For a triangle T , let $P(T): T$ is equilateral $Q(T): T$ is isosceles. State $P(T) \Rightarrow Q(T)$ in a variety of ways:	
	AMPLE 21. Consider the following open sentences x : x is a multiple of 4. $Q(x)$: x is even. Complete:	
	 "For every integer integer x, P(x) ⇒ Q(x)" is P(x) is a condition for Q to be true 	
	· ·	

• Q(x) is a _____ condition for P(x) to be true.

• Q(x) is not a _____ condition for P(x) to be true.

P(j)	AMPLE 22. Consider the follows: f): f is a differentiable function. f): f is a continuous function. mplete:	
	• "For every real-valued function	$a f, P(f) \Rightarrow Q(f)$ " is
	• "For every real-valued function	$a f, Q(f) \Rightarrow P(f)$ " is
	• $Q(f)$ is a condition.	_condition for f to be differentiable, but not a
	• $P(f)$ is a	$_$ condition for f to be continuous.
EX	AMPLE 23. If m and n are odd	d integers then $m+n$ is even.
	Rewrite the statement in symbol	s. Then write its converse both in symbols and words.
	AMPLE 24. Rewrite the followes, where appropriate.	ing statements in symbols using quantifiers. Introduce vari-
a)	For every real number x , $x + 5 =$	= 7.
b)	All positive real numbers have a	square root.
c)	The sum of an even integer and	an odd integer is even.
d)	For every integer n , either $n \leq 1$	or $n^2 \ge 4$.

NEGATIONS

DEFINITION 25. If P is a statement, then the **negation** of P, written $\neg P$ (read "not P"), is the statement "P is false".

1. All continuous functions are differentiable.

2. P: Every car on the parking lot #47 was with valid permit.

 $\neg P$

3. P: There exist real numbers a and b such that $(a + b)^2 = a^2 + b^2$.

 $\neg P$

Rules to negate statements with quantifiers:

$$\neg(\forall x \in D, P(x)) \equiv$$

$$\neg(\exists x \in D \ni P(x)) \equiv$$

$$\neg(\forall x\in D, (P(x)\vee Q(x))\equiv$$

$$\neg(\forall x \in D, (P(x) \land Q(x)) \equiv$$

$$\neg(\exists x\in D\ni (P(x)\vee Q(x))\equiv$$

$$\neg(\exists x \in D \ni (P(x) \land Q(x)) \equiv$$

EXAMPLE 26. Negate the statements below using the following steps:

- 1. Rewrite P in symbols using quantifiers.
- 2. Express the negation of P in symbols using the above rules.
- 3. Express $\neg P$ in words.
- a) P: If n is an odd integer then <math>3n + 7 is odd.

<u> </u>	
$\neg P$	
T.C	
If n is an	integer and n^2 is a multiple of 4 then n is a multiple of 4.
P	
$\neg P$	
$\neg P$	
$P: For\ ever$	where n integer n there exists an integer m such that $n = 2m$.
: For ever	y even integer n there exists an integer m such that $n = 2m$.
P	
P	
P	
P	
P ¬P ¬P	
P ¬P ¬P	
P ¬P ¬P	
P ¬P ¬P ?: There exi	sts a prime number p which is greater then 7 and less than 10.
P $\neg P$ $\neg P$ P : There exists P	sts a prime number p which is greater then 7 and less than 10.
P ¬P ?: There exi P ¬P	sts a prime number p which is greater then 7 and less than 10.