Mathematical Reasoning (Part III)

Negating An Implication

THEOREM 1. For statements P and Q,

$$\neg (P \Rightarrow Q) \equiv P \land (\neg Q).$$

Proof.

REMARK 2. The negation of an implication is not an implication!

EXAMPLE 3. Apply Theorem 1 to Negate the following statement:¹ S: If n is an integer and n^2 is a multiple of 4, then n is a multiple of 4.

S______ ¬S______

EXAMPLE 4. Express the following statements in the form "for all ... , if ... then ..." using symbols to represent variables. Then write their negations, again using symbols.

(a) S: Every octagon has eight sides.

(b) S: Between any two real numbers there is a rational number.

 1 Cf. to Example 24(c) (Chapter 1 (part 1) of notes).

Disproving Statements

Case 1. Counterexamples

Let S(x) be an open sentence over a domain D. If the quantified statement $\forall x \in D, S(x)$ is *false*, then its negation is true, i.e.

Such an element x is called a **counterexample** of the false statement $\forall x \in D, S(x)$.

EXAMPLE 5. Disprove the statement: "If $n \in \mathbf{O}$, then $3|n^2 + 2$." Solution.

EXAMPLE 6. Negate the statement: "For all $x \in D, P(x) \Rightarrow Q(x)$."

The value assigned to the variable x that makes P(x) true and Q(x) false is a **counterexample** of the statement "For all $x \in D, P(x) \Rightarrow Q(x)$."

EXAMPLE 7. S: If n is an integer and n^2 is a multiple of 4 then n is a multiple of 4. Question: Is the following "proof" valid? Let n = 6. Then $n^2 = 6^2 = 36$ and 36 is a multiple of 4, but 6 is not a multiple of 4. Therefore, the statement S is FALSE.

EXAMPLE 8. Disprove the following statement:

If a real-valued function is continuous at some point, then this function is differentiable there.

Case 2: Existence Statements

Consider the quantified statement $\exists x \in D \ni S(x)$. If this statement is *false*, then its negation is true, i.e.

EXAMPLE 9. Disprove the statement: "There exists an even integer n such that 3n+5 is even."

Methods to prove an implication $P \Rightarrow Q$ (continued)

THEOREM 10. Let S and C be statement forms. Then $\neg S \Rightarrow (C \land \neg C)$ is logically equivalent to S.

Proof.

COROLLARY 11. Let P, Q and C be statement forms. Then

$$(P \Rightarrow Q) \equiv ((P \land \neg Q) \Rightarrow (C \land \neg C))$$

Proof.

• PROOF BY CONTRADICTION

- Assume that P is true.
- To derive a contradiction, assume that $\neg Q$ is true.
- Prove a false statement C, using negation $\neg(P \Rightarrow Q) \equiv (P \land \neg Q)$.
- Prove $\neg C$. It follows that Q is true. (The statement $C \land \neg C$ must be false, i.e. a contradiction.)

REMARK 12. If you use a proof by contradiction to prove that S, you should alert the reader about that by saying (or writing) one of the following

- Suppose that the statement S is false.
- Assume, to the contrary, that the statement S is false.
- By contradiction, assume, that the statement S is false.

REMARK 13. If you use a proof by contradiction to prove that $P \Rightarrow Q$, your proof might begin with

- Assume, to the contrary, that the statement P is true and the statement Q is false. or
- By contradiction, assume, that the statement P is true and $\neg Q$ is true.

REMARK 14. If you use a proof by contradiction to prove the quantified statement

$$\forall x \in D, P(x) \Rightarrow Q(x),$$

then the proof begins by assuming the existence of a counterexample of this statement. Therefore, the proof might begin with:

- Assume, to the contrary, that there exists some element $x \in D$ for which P(x) is true and Q(x) is false.

or

- By contradiction, assume, that there exists an element $x \in D$ such that P(x) is true, but $\neg Q(x)$ is true.

EXAMPLE 15. Prove that there is no smallest positive real number.

PROPOSITION 16. If m and n are integers, then $m^2 \neq 4n + 2$.

Proof.

- COROLLARY 17. The equation $m^2 4n = 2$ has no integer solutions.
- COROLLARY 18. If the square of an integer is divided by 4, the remainder cannot be equal 2.
- COROLLARY 19. The square of an integer cannot be of the form 4n + 2, $n \in \mathbb{Z}$.
- PROPOSITION 20. Let a, b, and c be integers. If $a^2 + b^2 = c^2$ then a or b is an even integer.

Proof.

DEFINITION 21. A real number x is rational if $x = \frac{m}{n}$ for some integer numbers m and n. Also, x is irrational if it is not rational, that is

The fraction $\frac{m}{n}$ is *reduced to lowest terms*, if the integers *m* and *n* have no common factors except ± 1 .

PROPOSITION 22. The number $\sqrt{2}$ is irrational.

A Review of Three Proof Techniques

EXAMPLE 23. Prove the following statement by a direct proof, by a proof by contrapositive and by a proof by contradiction:

"If n is an even integer, then 5n + 9 is odd."

	First step of "Proof"	Technique	Goal
1	Assume that there exists $x \in D$ such that		
	P(x) is true.		
2	Assume that there exists $x \in D$ such that		
	P(x) is false.		
3	Assume that there exists $x \in D$ such that		
	Q(x) is true.		
4	Assume that there exists $x \in D$ such that		
	Q(x) is false.		
5	Assume that there exists $x \in D$ such that		
	P(x) and $Q(x)$ are true.		
6	Assume that there exists $x \in D$ such that		
	P(x) is true and $Q(x)$ is false.		
7	Assume that there exists $x \in D$ such that		
	P(x) is false and $Q(x)$ is true.		
8	Assume that there exists $x \in D$ such that		
	P(x) and $Q(x)$ are false.		
9	Assume that there exists $x \in D$ such that		
	$P(x) \Rightarrow Q(x)$ is true.		
10	Assume that there exists $x \in D$ such that		
	$P(x) \Rightarrow Q(x)$ is false.		

How to prove	(and not to prov	e) that $\forall x \in D, h$	$P(x) \Rightarrow Q(x).$

Existence Proofs

An existence theorem can be expressed as a quantified statement

 $\exists x \in D \ni S(x)$: There exists $x \in D$ such that S(x) is true.

A proof of an existence theorem is called an existence proof.

EXAMPLE 24. There exists real numbers a and b such that $\sqrt{a^2 + b^2} = a + b$.

Proof.

THEOREM 25. (Intermediate Value Theorem of Calculus) If f is a function that is continuous on the closed interval [a, b] and m is a number between f(a) and f(b), then there exists a number $c \in (a, b)$ such that f(c) = m. EXAMPLE 26. Prove that following equation has a real number solution (a root) between x = 2/3and x = 1:

$$x^3 + x^2 - 1 = 0.$$

Uniqueness Proof

An element belonging to some prescribed set D and possessing a certain property P is **unique** if it is the only element of D having property P. Typical ways to prove uniqueness:

- 1. By a direct proof: Assume that x and y are elements of D possessing property P and show that x = y.
- 2. By a proof by contradiction: Assume that x and y are distinct elements of D and show that x = y.

EXAMPLE 27. Prove that following equation has a unique real number solution (a root) between x = 2/3 and x = 1:

$$x^3 + x^2 - 1 = 0.$$

Induction²

"Domino Effect"

Step 1. The first domino falls.

Step 2. When any domino falls, the next domino falls.

Conclusion. All dominoes will fall!

THEOREM 28.³ (First Principle of Mathematical Induction) Let P(n) be a statement about the positive integer n. Suppose that P(1) is true. Whenever k is a positive integer for which P(k) is true, then P(k+1) is true. Then P(n) is true for every positive integer n.

Strategy

The proof by induction consists of the following steps:

Basic Step: Verify that P(1) is true.

Induction hypothesis: Assume that k is a positive integer for which P(k) is true.

Inductive Step: With the assumption made, prove that P(k+1) is true.

Conclusion: P(n) is true for every positive integer n.

EXAMPLE 29. Prove by induction the formula for the sum of the first n positive integers

$$1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}.$$
(1)

 $^{^2\}mathrm{This}$ topic is covered in Section 5.2 in the textbook.

 $^{^{3}}$ We will prove this theorem later.

EXAMPLE 30. Find the sum of all odd numbers from 1 to 2n + 1 $(n \in \mathbb{Z}^+)$.

EXAMPLE 31. Prove by induction the following formula

$$1^{2} + 2^{2} + 3^{2} + \ldots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

EXAMPLE 32. Prove that $3|8^n - 5^n$ for every positive integer n.