2. Sets (Part II: Proofs Involving Sets)

Fundamental properties of sets

THEOREM 1. The following statements are true for all sets A, B, and C.

- 1. $A \cup B = B \cup A$ (commutative)
- 2. $A \cap B = B \cap A$ (commutative)
- 3. $(A \cup B) \cup C = A \cup (B \cup C)$ (associative)
- 4. $(A \cap B) \cap C = A \cap (B \cap C)$ (associative)
- 5. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (distributive)
- 6. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (distributive)

DeMorgan's Laws: If A and B are the sets contained in some universal set U then

- $7. \ \overline{A \cup B} = \overline{A} \cap \overline{B}.$
- 8. $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Proving set properties

Use the following tautologies:

- $x \in A \cap B \Leftrightarrow (x \in A \land x \in B)$
- $\bullet \ x \in A \cup B \Leftrightarrow$
- $x \in A B \Leftrightarrow$
- $A = B \Leftrightarrow (x \in A \Leftrightarrow x \in B)$
- $A \subseteq B \Leftrightarrow (x \in A \Rightarrow x \in B)$
- $x \in \bar{A} \Leftrightarrow x \notin A$

Methods:

- To prove $A \subseteq B$ it is sufficient to prove $x \in A \Rightarrow x \in B$.
- To prove A = B it is sufficient to prove $x \in A \Leftrightarrow x \in B$.
- To prove A = B it is sufficient to prove $A \subseteq B$ and $B \subseteq A$.
- To show that $A = \emptyset$ it is sufficient to show that $x \in A$ implies a false statement.

THEOREM 2. The following statements are true for all sets A and B.

- 1. $A \subseteq A \cup B$.
- 2. $A \cap B \subseteq A$.
- 3. The empty set is a subset of every set. (Namely, for every set A, $\emptyset \subseteq A$. If $A \neq \emptyset$, then $\emptyset \subset A$.).
- 4. $A \cup \emptyset = A$.
- 5. $A \cap \emptyset = \emptyset$.

EXAMPLE 3. Let A and B be sets. Show that $(A - B) \cap B = \emptyset$.

PROPOSITION 4. Let U be a universal set and A and B be its subsets. Prove that

$$A - B = A \cap \overline{B}$$

•

EXAMPLE 5. Let A, B and C be sets. Prove that

$$A - (B \cup C) = (A - B) \cap (A - C)$$

EXAMPLE 6. For the sets A, B and C prove that

 $A\times (B\cup C)=(A\times B)\cup (A\times C)$

PROPOSITION 7. Let A, B, and C be sets, and suppose $A \subseteq B$ and $B \subseteq C$. Then $A \subseteq C$.

EXAMPLE 8. Let A, B, C and D be sets. If $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$.

EXAMPLE 9. Prove the following statement. Let A and B be subsets of a universal set U. Then $(A \subseteq B) \Leftrightarrow (A \cup B = B)$.

EXAMPLE 10. Let A and B be subsets of a universal set U. Prove that

$$A = A - B \Leftrightarrow A \cap B = \emptyset.$$