4\&5 Binary Operations and Relations. The Integers.

4.1: Binary Operations

DEFINITION 1. A binary operation $*$ on a nonempty set A is a function from $A \times A$ to A.

Addition, subtraction, multiplication are binary operations on \mathbf{Z}.

Addition is a binary operation on \mathbf{Q} because

Division is NOT a binary operation on \mathbf{Z} because

Division is a binary operation on

- To prove that $*$ is a binary operation on a set A
- To show that $*$ is not a binary operation on a set A

Classification of binary operations by their properties

Associative and Commutative Laws

DEFINITION 2. A binary operation $*$ on A is associative if

$$
\forall a, b, c \in A, \quad(a * b) * c=a *(b * c) .
$$

A binary operation $*$ on A is commutative if

$$
\forall a, b \in A, \quad a * b=b * a .
$$

EXAMPLE 3. Using symbols complete the following
(a) A binary operation $*$ on A is not associative if
(b) A binary operation $*$ on A is not commutative if

Identities

DEFINITION 4. If $*$ is a binary operation on A, an element $e \in A$ is an identity element of A w.r.t * if

$$
\forall a \in A, \quad a * e=e * a=a .
$$

EXAMPLE 5. (a) 1 is an identity element for \mathbf{Z}, \mathbf{Q} and \mathbf{R} w.r.t. multiplication.
(b) 0 is an identity element for \mathbf{Z}, \mathbf{Q} and \mathbf{R} w.r.t. addition.

Inverses

DEFINITION 6. Let * be a binary operation on A with identity e, and let $a \in A$. We say that a is invertible w.r.t. * if there exists $b \in A$ such that

$$
a * b=b * a=e .
$$

If b exists, we say that b is an inverse of a w.r.t. $*$ and write $b=a^{-1}$.
Note, inverses may or may not exist.

EXAMPLE 7. Every $x \in \mathbf{Z}$ has inverse w.r.t. addition because

$$
\forall x \in \mathbf{Z}, \quad x+(-x)=(-x)+x=0
$$

However, very few elements in \mathbf{Z} have multiplicative inverses. Namely,

EXAMPLE 8. Let $*$ be an operation on \mathbf{Z} defined by

$$
\forall a, b \in \mathbf{Z}, \quad a * b=a+3 b-1 .
$$

(a) Prove that the operation is binary.
(b) Determine whether the operation is associative and/or commutative. Prove your answers.
(c) Determine whether the operation has identities.
(d) Discuss inverses.

EXAMPLE 9. Let $*$ be an operation on the power set $P(A)$ defined by

$$
\forall X, Y \in P(A), \quad X * Y=X \cap Y
$$

(a) Prove that the operation is binary.
(b) Determine whether the operation is associative and/or commutative. Prove your answers.
(c) Determine whether the operation has identities.
(d) Discuss inverses.

EXAMPLE 10. Let $*$ be an operation on $F(A)$ defined by

$$
\forall f, g \in F(A), \quad f * g=f \circ g .
$$

(a) Prove that the operation is binary.
(b) Determine whether the operation is associative and/or commutative.
(c) Determine whether the operation has identities.
(d) Discuss inverses.

PROPOSITION 11. Let $*$ be a binary operation on a nonempty set A. If e is an identity element on A then e is unique.

Proof.

PROPOSITION 12. Let $*$ be an associative binary operation on a nonempty set A with the identity e, and if $a \in A$ has an inverse element w.r.t. $*$, then this inverse element is unique.

Proof.

Closure

DEFINITION 13. Let $*$ be a binary operation on a nonempty set A, and suppose that $S \subseteq A$. If $*$ is also a binary operation on S then we say that S is closed in A under $*$.

EXAMPLE 14. Let $*$ be a binary operation on A and let $S \subseteq A$. Using symbols complete the following
(a) S is closed in A under $*$ if and only if
(a) S is not closed in A under $*$ if

EXAMPLE 15. Determine whether the following subsets of \mathbf{Z} are closed in \mathbf{Z} under addition and multiplication.
(a) Z^{+}
(b) E
(c) O

5.1: The Integers: Axioms and Basic Properties

Operations on the set of integers, Z: addition and multiplication with the following properties:
A1. Addition is associative:

A2. Addition is commutative:

A3. \mathbf{Z} has an identity element with respect to addition namely, the integer 0 .

A4. Every integer x in \mathbf{Z} has an inverse w.r.t. addition, namely, its negative $-x$:

A5. Multiplication is associative:

A6. Multiplication is commutative:

A7. \mathbf{Z} has an identity element with respect to multiplication namely, the integer 1. (and $1 \neq 0$.)

A8. Distributive Law:

REMARK 16. We do not prove A1-A8. We take them as axioms: statements we assume to be true about the integers.

We use $x y$ instead $x \cdot y$ and $x-y$ instead $x+(-y)$.
PROPOSITION 17. Let $a, b, c \in \mathbf{Z}$.
P1. If $a+b=a+c$ then $b=c$. (cancellation law for addition)
P2. $a \cdot 0=0 \cdot a=0$.
P3. $(-a) b=a(-b)=-(a b)$
P4. $-(-a)=a$
P5. $(-a)(-b)=a b$
P6. $a(b-c)=a b-a c$
P7. $(-1) a=-a$
P8. $(-1)(-1)=1$.

Proof
\mathbf{Z} contains a subset \mathbf{Z}^{+}, called the positive integers, that has the following properties:
A9. Closure property: \mathbf{Z}^{+}is closed in \mathbf{Z} w.r.t. addition and multiplication:

A10. Trichotomy Law: for all $x \in \mathbf{Z}$ exactly one is true:

PROPOSITION 18. If $x \in \mathbf{Z}, x \neq 0$, then $x^{2} \in \mathbf{Z}^{+}$.
Proof.

COROLLARY 19. $\mathbf{Z}^{+}=\{1,2,3, \ldots, n, n+1, \ldots\}$
Proof.

Inequalities (the order relation less than)

DEFINITION 20. For $x, y \in \mathbf{Z}, x<y$ if and only $y-x \in \mathbf{Z}^{+}$.
REMARK 21. If $x<y$, we can also write $y>x$. We can also write $x \leq y$ if $x<y$ or $x=y$. Similarly, $y \geq x$ if $y>x$ or $y=x$.

Note that $\mathbf{Z}^{+}=\{n \in \mathbf{Z} \mid n>0\}$.
EXAMPLE 22. Let $x, y \in \mathbf{Z}$. Using symbols complete the following

- $x<y \Leftrightarrow$
- $x>y \Leftrightarrow$
- $x<0 \Leftrightarrow$
- $x>0 \Leftrightarrow$

PROPOSITION 23. Let $a, b \in \mathbf{Z}$.
Q1. Exactly one of the following holds: $a<b, b<a$, or $a=b$.
Q2. If $a>0$ then $-a<0$; if $a<0$ then $-a>0$.
Q3. If $a>0$ and $b>0$ then $a+b>0$ and $a b>0$.
Q4. If $a>0$ and $b<0$ then $a b<0$.
Q5. If $a<0$ and $b<0$ then $a b>0$.
Proof.

PROPOSITION 24. Let $a, b, c \in \mathbf{Z}$.
Q6. If $a<b$ and $b<c$ then $a<c$.
Q7. If $a<b$ and $a+c<b+c$.
Q8. If $a<b$ and $c>0$ then $a c<b c$.
Q9. If $a<b$ and $c<0$ then $a c>b c$.
A11. The Well Ordering Principle Every nonempty subset on \mathbf{Z}^{+}has a smallest element; that is, if S is a nonempty subset of Z^{+}, then there exists $a \in S$ such that $a \leq x$ for all $x \in S$.

PROPOSITION 25. There is no integer x such that $0<x<1$.
Proof.

COROLLARY 26. 1 is the smallest element of \mathbf{Z}^{+}.
COROLLARY 27. The only integers having multiplicative inverses in \mathbf{Z} are ± 1.

5.2: Induction ${ }^{1}$

THEOREM 28. (First Principle of Mathematical Induction) Let $P(n)$ be a statement about the positive integer n. Suppose that $P(1)$ is true. Whenever k is a positive integer for which $P(k)$ is true, then $P(k+1)$ is true. Then $P(n)$ is true for every positive integer n.

Proof.

Paradox: All horses are of the same color.
Question: What's wrong in the following "proof" of G. Pólya?
$P(n)$: Let $n \in \mathbf{Z}^{+}$. Within any set of n horses, there is only one color.
Basic Step. If there is only one horse, there is only one color.
Induction Hypothesis. Assume that within any set of k horses, there is only one color.
Inductive step. Prove that within any set of $k+1$ horses, there is only one color.
Indeed, look at any set of $k+1$ horses. Number them: $1,2,3, \ldots, k, k+1$. Consider the subsets $\{1,2,3, \ldots, k\}$ and $\{2,3,4, \ldots, k+1\}$. Each is a set of only k horses, therefore within each there is only one color. But the two sets overlap, so there must be only one color among all $k+1$ horses.

[^0]
5.3: The Division Algorithm And Greatest Common Divisor

THEOREM 29. (Division Algorithm) Let $a \in \mathbf{Z}, b \in \mathbf{Z}^{+}$. Then there exist unique integers q and r such that

$$
a=b q+r, \quad \text { where } \quad 0 \leq r<b .
$$

EXAMPLE 30. (a) Rewrite the Division Algorithm using symbols.
(b) Let $a=33, b=7$. Determine q and r.
(b) Let $a=-33, b=7$. Determine q and r.

COROLLARY 31. Let $b \in \mathbf{Z}^{+}$. Then for every integer a there exists a unique integer q such that exactly one of the following holds:

$$
a=b q, \quad a=b q+1, \quad a=b q+2, \ldots, a=b q+(b-1) .
$$

COROLLARY 32. Every integer is either even, or odd.

Divisors (see Chapter 1, part II of notes)

Recall the following
DEFINITION 33. Let a and b be integers. We say that b divides a, written $b \mid a$, if there is an integer c such that $b c=a$. We say that b and c are factors of a, or that a is divisible by b and c.

Recall the following divisibility properties.
PROPOSITION 34. Let $a, b, c \in \mathbf{Z}$.
(a) If $a \mid 1$, then $a= \pm 1$.
(b) If $a \mid b$ and $b \mid a$, then $a= \pm b$.
(c) If $a \mid b$ and $a \mid c$, then $a \mid(b x+c y)$ for any $x, y \in \mathbf{Z}$.
(d) If $a \mid b$ and $b \mid c$, then $a \mid c$.

Greatest common divisor (gcd)

DEFINITION 35. Let a and b be integers, not both zero. The greatest common divisor of a and b (written $\operatorname{gcd}(a, b)$, or $(a, b))$ is the largest positive integer d that divides both a and b.

EXAMPLE 36. Find $\operatorname{gcd}(18,24)$.

EXAMPLE 37. (a) Compute

$$
\operatorname{gcd}(-18,24)=\quad \operatorname{gcd}(-24,-18)=
$$

and make a conclusion.
(b) Compute

$$
\operatorname{gcd}(5,0)=\quad \operatorname{gcd}(-5,0)=
$$

and make a conclusion.
(c) Complete the statement: If $a \neq 0$ and $b \neq 0$, then $\operatorname{gcd}(a, b) \leq$ \qquad
(d) Let $c \in \mathbf{Z}$. Then $\operatorname{gcd}(a, a c)=$ \qquad
Euclidean Algorithm is based on the following two lemmas:
LEMMA 38. Let a and b be two positive integers. If $a \mid b$ then $\operatorname{gcd}(a, b)=|a|$.

LEMMA 39. Let a and b be two positive integers such that $b \geq a$. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, b-a)$. Proof.

COROLLARY 40. Let a and b be integers, not both zero. Suppose that there exist integers q_{1} and r_{1} such that $b=a q_{1}+r_{1}, 0 \leq r_{1}<a$. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}\left(a, r_{1}\right)$.

Procedure for finding gcd of two integers (the Euclidean Algorithm)

EXAMPLE 41. Find $\operatorname{gcd}(1176,3087)$.

EXAMPLE 42. Find integers x and y such that $147=1176 x+3087 y$.

COROLLARY 43. If $d=\operatorname{gcd}(a, b)$ then there exist integers x and y such that $a x+b y=d$. Moreover, d is the minimal natural number with such property.

Relatively prime (or coprime) integers
DEFINITION 44. Two integers a and b, not both zero, are said to be relatively prime (or coprime), if $\operatorname{gcd}(a, b)=1$.

For example,

Combining the above definition and the proof of Corollary 43, we obtain
THEOREM 45. a and b are relatively prime integers if and only if there exist integers x and y such that $a x+b y=1$.

THEOREM 46. Let $a, b, c \in \mathbf{Z}$. Suppose $a \mid b c$ and $\operatorname{gcd}(a, b)=1$. Then $a \mid c$.
Proof.

5.4: Primes and Unique Factorization

DEFINITION 47. An integer p greater than 1 is called a prime number if the only divisors of p are ± 1 and $\pm p$. If an integer greater than 1 is not prime, it is called composite.

-7	-4	0	1	2	4	7	10209

Sieve of Eratosthenes.

The method to find all primes from 2 to n.

1. Write out all integers from 2 to n.
2. Select the smallest integer p that is not selected or crossed out.
3. Cross out all multiples of p (these will be $2 p, 3 p, 4 p, \ldots$; the p itself should not be crossed out).
4. If not all numbers are selected or crossed out return to step 2. Otherwise, all selected numbers are prime.

EXAMPLE 48. Find all two digit prime numbers.

	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	

REMARK 49. It is sufficient to cross out the numbers in step 3 starting from p^{2}, as all the smaller multiples of p will have already been crossed out at that point. This means that the algorithm is allowed to terminate in step 4 when p^{2} is greater than n. In other words, if the number p in step 2 is greater than \sqrt{n} then all numbers that are already selected or not crossed out are prime.

Prime Factorization of a positive integer n greater than 1 is a decomposition of n into a product of primes.

Standard Form $n=p_{1} p_{2} \cdots p_{k}$, where primes $p_{1}, p_{2}, \ldots, p_{k}$ satisfy $p_{1} \leq p_{2} \leq \ldots \leq p_{k}$
Compact Standard Form $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{m}^{\alpha_{m}}$, where primes $p_{1}, p_{2}, \ldots, p_{m}$ satisfy $p_{1}<p_{2}<\ldots<p_{m}$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in \mathbf{Z}$.

EXAMPLE 50. Write 1224 and 225 in a standard form (i.e. find prime factorization).

LEMMA 51. Let a and b be integers. If p is prime and divides ab, then p divides either a, or b. (Note, p also may divide both a and b.)

Proof.

COROLLARY 52. Let $a_{1}, a_{2}, \ldots, a_{n}$ be integers.If p is prime and divides $a_{1} a_{2} \cdot \ldots a_{n}$, then p divides at least one integer from $a_{1}, a_{2}, \ldots, a_{n}$.

Note that Lemma 51 corresponds to $n=2$. General proof of the above Corollary is by induction.
THEOREM 53. (Second Principle of Mathematical Induction) Let $P(n)$ be a statement about the positive integer n. Suppose that $P(1)$ is true. Whenever k is a positive integer for which $P(i)$ is true for every positive integer i such that $i \leq k$, then $P(k+1)$ is true. Then $P(n)$ is true for every positive integer n.

THEOREM 54. Unique Prime Factorization Theorem. Let $n \in \mathbf{Z}, n>1$. Then n is a prime number or can be written as a product of prime numbers. Moreover, the product is unique, except for the order in which the factors appears.

Proof.
Existence: Use the Second Principle of Mathematical Induction.
$P(n)$:
Basic step:
Induction hypothesis:

Inductive step:

Uniqueness Use the Second Principle of Mathematical Induction.
$P(n)$:

Basic step:
Induction hypothesis:

COROLLARY 55. There are infinitely many prime numbers.
Proof.

EXAMPLE 56. Prove that if a is a positive integer of the form $4 n+3$, then at least one prime divisor of a is of the form $4 n+3$.

Proof

[^0]: ${ }^{1}$ see also Chapter 1 (Part III)

