4&5 Binary Operations and Relations. The Integers.

4.1: Binary Operations

DEFINITION 1. A binary operation * on a nonempty set A is a function from $A \times A$ to A.

Addition, subtraction, multiplication are binary operations on Z.

Addition is a binary operation on \mathbf{Q} because

Division is NOT a binary operation on \mathbf{Z} because

Division is a binary operation on

- To prove that * is a binary operation on a set A
- To show that * is <u>not</u> a binary operation on a set A

Classification of binary operations by their properties

Associative and Commutative Laws

DEFINITION 2. A binary operation * on A is associative if

 $\forall a, b, c \in A, \quad (a * b) * c = a * (b * c).$

A binary operation * on A is commutative if

$$\forall a, b \in A, \quad a * b = b * a.$$

EXAMPLE 3. Using symbols complete the following

(a) A binary operation * on A is <u>not</u> associative if

(b) A binary operation * on A is <u>not</u> commutative if

Identities

DEFINITION 4. If * is a binary operation on A, an element $e \in A$ is an identity element of A w.r.t * if

 $\forall a \in A, \quad a * e = e * a = a.$

EXAMPLE 5. (a) 1 is an identity element for \mathbf{Z} , \mathbf{Q} and \mathbf{R} w.r.t. multiplication.

(b) 0 is an identity element for **Z**, **Q** and **R** w.r.t. addition.

Inverses

DEFINITION 6. Let * be a binary operation on A with identity e, and let $a \in A$. We say that a is **invertible** w.r.t. * if there exists $b \in A$ such that

$$a * b = b * a = e$$

If b exists, we say that b is an inverse of a w.r.t. * and write $b = a^{-1}$.

Note, inverses may or may not exist.

EXAMPLE 7. Every $x \in \mathbf{Z}$ has inverse w.r.t. addition because

$$\forall x \in \mathbf{Z}, \quad x + (-x) = (-x) + x = 0.$$

However, very few elements in Z have multiplicative inverses. Namely,

EXAMPLE 8. Let * be an operation on \mathbf{Z} defined by

$$\forall a, b \in \mathbf{Z}, \quad a * b = a + 3b - 1.$$

(a) Prove that the operation is binary.

(b) Determine whether the operation is associative and/or commutative. Prove your answers.

(c) Determine whether the operation has identities.

(d) Discuss inverses.

EXAMPLE 9. Let * be an operation on the power set P(A) defined by

$$\forall X, Y \in P(A), \quad X * Y = X \cap Y.$$

(a) Prove that the operation is binary.

(b) Determine whether the operation is associative and/or commutative. Prove your answers.

(c) Determine whether the operation has identities.

(d) Discuss inverses.

EXAMPLE 10. Let * be an operation on F(A) defined by

$$\forall f, g \in F(A), \quad f * g = f \circ g.$$

(a) Prove that the operation is binary.

(b) Determine whether the operation is associative and/or commutative.

(c) Determine whether the operation has identities.

(d) Discuss inverses.

PROPOSITION 11. Let * be a binary operation on a nonempty set A. If e is an identity element on A then e is unique.

Proof.

PROPOSITION 12. Let * be an associative binary operation on a nonempty set A with the identity e, and if $a \in A$ has an inverse element w.r.t. *, then this inverse element is unique.

Proof.

Closure

DEFINITION 13. Let * be a binary operation on a nonempty set A, and suppose that $S \subseteq A$. If * is also a binary operation on S then we say that S is closed in A under *.

EXAMPLE 14. Let * be a binary operation on A and let $S \subseteq A$. Using symbols complete the following (a) S is closed in A under * if and only if

(a) S is <u>not</u> closed in A under * if

EXAMPLE 15. Determine whether the following subsets of \mathbf{Z} are closed in \mathbf{Z} under addition and multiplication.

(a) Z⁺

(b) E

(c) O

5.1: The Integers: Axioms and Basic Properties

Operations on the set of integers, Z: addition and multiplication with the following properties:

- A1. Addition is associative:
- A2. Addition is commutative:

A3. Z has an identity element with respect to addition namely, the integer 0.

A4. Every integer x in Z has an inverse w.r.t. addition, namely, its negative -x:

A5. Multiplication is associative:

- A6. Multiplication is commutative:
- A7. Z has an identity element with respect to multiplication namely, the integer 1. (and $1 \neq 0$.)

A8. Distributive Law:

REMARK 16. We do not prove A1-A8. We take them as **axioms**: statements we *assume* to be true about the integers.

We use xy instead $x \cdot y$ and x - y instead x + (-y).

PROPOSITION 17. Let $a, b, c \in \mathbf{Z}$.

P1. If a + b = a + c then b = c. (cancellation law for addition)

P2.
$$a \cdot 0 = 0 \cdot a = 0.$$

- **P3.** (-a)b = a(-b) = -(ab)
- **P4.** -(-a) = a
- **P5.** (-a)(-b) = ab

P6. a(b-c) = ab - ac

- **P7.** (-1)a = -a
- **P8.** (-1)(-1) = 1.

Proof

Z contains a subset Z^+ , called the **positive integers**, that has the following properties: A9. Closure property: Z^+ is closed in Z w.r.t. addition and multiplication:

A10. Trichotomy Law: for all $x \in \mathbb{Z}$ exactly one is true:

PROPOSITION 18. If $x \in \mathbf{Z}$, $x \neq 0$, then $x^2 \in \mathbf{Z}^+$. Proof.

COROLLARY 19. $\mathbf{Z}^+ = \{1, 2, 3, \dots, n, n+1, \dots\}$

Proof.

Inequalities (the order relation less than)

DEFINITION 20. For $x, y \in \mathbf{Z}$, x < y if and only $y - x \in \mathbf{Z}^+$.

REMARK 21. If x < y, we can also write y > x. We can also write $x \le y$ if x < y or x = y. Similarly, $y \ge x$ if y > x or y = x. Note that $\mathbf{Z}^+ = \{n \in \mathbf{Z} | n > 0\}$.

EXAMPLE 22. Let $x, y \in \mathbf{Z}$. Using symbols complete the following

- $x < y \quad \Leftrightarrow$
- $x > y \quad \Leftrightarrow$
- $\bullet \ x < 0 \quad \Leftrightarrow \quad$
- $\bullet \ x > 0 \quad \Leftrightarrow \quad$

PROPOSITION 23. Let $a, b \in \mathbf{Z}$.

Q1. Exactly one of the following holds: a < b, b < a, or a = b.

Q2. If a > 0 then -a < 0; if a < 0 then -a > 0.

Q3. If a > 0 and b > 0 then a + b > 0 and ab > 0.

Q4. If a > 0 and b < 0 then ab < 0.

Q5. If a < 0 and b < 0 then ab > 0.

Proof.

PROPOSITION 24. Let $a, b, c \in \mathbf{Z}$.

- **Q6.** If a < b and b < c then a < c.
- **Q7.** If a < b and a + c < b + c.
- **Q8.** If a < b and c > 0 then ac < bc.
- **Q9.** If a < b and c < 0 then ac > bc.
- A11. The Well Ordering Principle Every nonempty subset on \mathbb{Z}^+ has a smallest element; that is, if S is a nonempty subset of Z^+ , then there exists $a \in S$ such that $a \leq x$ for all $x \in S$.

PROPOSITION 25. There is no integer x such that 0 < x < 1.

Proof.

COROLLARY 26. 1 is the smallest element of \mathbf{Z}^+ . COROLLARY 27. The only integers having multiplicative inverses in \mathbf{Z} are ± 1 .

5.2: Induction¹

THEOREM 28. (First Principle of Mathematical Induction) Let P(n) be a statement about the positive integer n. Suppose that P(1) is true. Whenever k is a positive integer for which P(k) is true, then P(k+1) is true. Then P(n) is true for every positive integer n.

Proof.

Paradox: All horses are of the same color. Question: What's wrong in the following "proof" of G. Pólya?

P(n): Let $n \in \mathbb{Z}^+$. Within any set of n horses, there is only one color.

Basic Step. If there is only one horse, there is only one color.

Induction Hypothesis. Assume that within any set of k horses, there is only one color.

Inductive step. Prove that within any set of k + 1 horses, there is only one color.

Indeed, look at any set of k + 1 horses. Number them: 1, 2, 3, ..., k, k + 1. Consider the subsets $\{1, 2, 3, ..., k\}$ and $\{2, 3, 4, ..., k + 1\}$. Each is a set of only k horses, therefore within each there is only one color. But the two sets overlap, so there must be only one color among all k + 1 horses.

¹see also Chapter 1(Part III)

5.3: The Division Algorithm And Greatest Common Divisor

THEOREM 29. (Division Algorithm) Let $a \in \mathbb{Z}$, $b \in \mathbb{Z}^+$. Then there exist <u>unique</u> integers q and r such that

$$a = bq + r$$
, where $0 \le r < b$.

EXAMPLE 30. (a) Rewrite the Division Algorithm using symbols.

(b) Let a = 33, b = 7. Determine q and r.

(b) Let a = -33, b = 7. Determine q and r.

COROLLARY 31. Let $b \in \mathbb{Z}^+$. Then for every integer a there exists a unique integer q such that exactly one of the following holds:

a = bq, a = bq + 1, a = bq + 2,..., a = bq + (b - 1).

COROLLARY 32. Every integer is either even, or odd.

Divisors (see Chapter 1, part II of notes)

Recall the following

DEFINITION 33. Let a and b be integers. We say that b divides a, written b|a, if there is an integer c such that bc = a. We say that b and c are factors of a, or that a is divisible by b and c.

Recall the following divisibility properties.

PROPOSITION 34. Let $a, b, c \in \mathbf{Z}$.

- (a) If a|1, then $a = \pm 1$.
- (b) If a|b and b|a, then $a = \pm b$.
- (c) If a|b and a|c, then a|(bx + cy) for any $x, y \in \mathbb{Z}$.
- (d) If a|b and b|c, then a|c.

Greatest common divisor (gcd)

DEFINITION 35. Let a and b be integers, not both zero. The greatest common divisor of a and b (written gcd(a,b), or (a,b)) is the largest positive integer d that divides both a and b.

EXAMPLE 36. Find gcd(18, 24).

EXAMPLE 37. (a) Compute

$$gcd(-18, 24) = gcd(-24, -18) =$$

and make a conclusion.

(b) Compute

$$gcd(5,0) = gcd(-5,0) =$$

and make a conclusion.

- (c) Complete the statement: If $a \neq 0$ and $b \neq 0$, then $gcd(a, b) \leq$
- (d) Let $c \in \mathbf{Z}$. Then gcd(a, ac) =_____

Euclidean Algorithm is based on the following two lemmas:

LEMMA 38. Let a and b be two positive integers. If a|b then gcd(a,b) = |a|.

LEMMA 39. Let a and b be two positive integers such that $b \ge a$. Then gcd(a, b) = gcd(a, b - a). Proof. COROLLARY 40. Let a and b be integers, not both zero. Suppose that there exist integers q_1 and r_1 such that $b = aq_1 + r_1$, $0 \le r_1 < a$. Then $gcd(a, b) = gcd(a, r_1)$.

Procedure for finding gcd of two integers (the Euclidean Algorithm)

EXAMPLE 41. Find gcd(1176, 3087).

EXAMPLE 42. Find integers x and y such that 147 = 1176x + 3087y.

COROLLARY 43. If d = gcd(a, b) then there exist integers x and y such that ax + by = d. Moreover, d is the minimal natural number with such property.

Relatively prime (or coprime) integers

DEFINITION 44. Two integers a and b, not both zero, are said to be relatively prime (or coprime), if gcd(a, b) = 1.

For example,

Combining the above definition and the proof of Corollary 43, we obtain

THEOREM 45. a and b are relatively prime integers if and only if there exist integers x and y such that ax + by = 1.

THEOREM 46. Let $a, b, c \in \mathbb{Z}$. Suppose a|bc and gcd(a, b) = 1. Then a|c.

Proof.

5.4: Primes and Unique Factorization

DEFINITION 47. An integer p greater than 1 is called a **prime** number if the only divisors of p are ± 1 and $\pm p$. If an integer greater than 1 is not prime, it is called **composite**.

-7	-4	0	1	2	4	7	10209

Sieve of Eratosthenes.

The method to find all primes from 2 to n.

- 1. Write out all integers from 2 to n.
- 2. Select the smallest integer p that is not selected or crossed out.
- 3. Cross out all multiples of p (these will be $2p, 3p, 4p, \ldots$; the p itself should not be crossed out).
- 4. If not all numbers are selected or crossed out return to step 2. Otherwise, all selected numbers are prime.

EXAMPLE 48. Find all two digit prime numbers.

	2	3	4	5	6	$\overline{7}$	8	9	10	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	

REMARK 49. It is sufficient to cross out the numbers in step 3 starting from p^2 , as all the smaller multiples of p will have already been crossed out at that point. This means that the algorithm is allowed to terminate in step 4 when p^2 is greater than n. In other words, if the number p in step 2 is greater than \sqrt{n} then all numbers that are already selected or <u>not</u> crossed out are prime. **Prime Factorization** of a positive integer n greater than 1 is a decomposition of n into a product of primes.

Standard Form $n = p_1 p_2 \cdots p_k$, where primes p_1, p_2, \ldots, p_k satisfy $p_1 \leq p_2 \leq \ldots \leq p_k$

Compact Standard Form $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m}$, where primes p_1, p_2, \ldots, p_m satisfy $p_1 < p_2 < \ldots < p_m$ and $\alpha_1, \alpha_2, \ldots, \alpha_m \in \mathbf{Z}$.

EXAMPLE 50. Write 1224 and 225 in a standard form (i.e. find prime factorization).

LEMMA 51. Let a and b be integers. If p is prime and divides ab, then p divides either a, or b. (Note, p also may divide both a and b.)

Proof.

COROLLARY 52. Let a_1, a_2, \ldots, a_n be integers. If p is prime and divides $a_1a_2 \cdot \ldots \cdot a_n$, then p divides at least one integer from a_1, a_2, \ldots, a_n .

Note that Lemma 51 corresponds to n = 2. General proof of the above Corollary is by induction.

THEOREM 53. (Second Principle of Mathematical Induction) Let P(n) be a statement about the positive integer n. Suppose that P(1) is true. Whenever k is a positive integer for which P(i) is true for every positive integer i such that $i \leq k$, then P(k+1) is true. Then P(n) is true for every positive integer n. THEOREM 54. Unique Prime Factorization Theorem. Let $n \in \mathbb{Z}$, n > 1. Then n is a prime number or can be written as a product of prime numbers. Moreover, the product is unique, except for the order in which the factors appears.

Proof.

Existence: Use the Second Principle of Mathematical Induction.

P(n): Basic step: Induction hypothesis:

Inductive step:

Uniqueness Use the Second Principle of Mathematical Induction. P(n):

Basic step: Induction hypothesis: COROLLARY 55. There are infinitely many prime numbers.

Proof.

EXAMPLE 56. Prove that if a is a positive integer of the form 4n + 3, then at least one prime divisor of a is of the form 4n + 3.

Proof