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4&5 Binary Operations and Relations. The Integers. (part I)

4.1: Binary Operations
DEFINITION 1. A binary operation x on a nonempty set A is a function from A x A to A.

Addition, subtraction, multiplication are binary operations on Z.

Addition is a binary operation on Q because

Division is NOT a binary operation on Z because
Division is a binary operation on

e To prove that x is a binary operation on a set A

e To show that * is not a binary operation on a set A
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Classification of binary operations by their properties
Associative and Commutative Laws
DEFINITION 2. A binary operation *x on A is associative if
Va,b,c€ A, (axb)xc=ax(bx*c).
A binary operation x on A is commutative if
Ya,be A, axb=bxa.

EXAMPLE 3. Using symbols complete the following

(a) A binary operation x on A is not associative if

(b) A binary operation * on A is not commutative if

Identities
DEFINITION 4. If % is a binary operation on A, an element e € A is an identity element of A w.r.t
* if

YVa € A, axe=ecxa=a.

EXAMPLE 5. (a) 1 is an identity element for Z, Q and R w.r.t. multiplication.

(b) 0 is an identity element for Z, Q and R w.r.t. addition.

Inverses

DEFINITION 6. Let x be a binary operation on A with identity e, and let a € A. We say that a is
invertible w.r.t. * if there exists b € A such that

axb=bxa=c¢.

If b exists, we say that b is an inverse of a w.r.t. * and write b= a~ .

Note, inverses may or may not exist.
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EXAMPLE 7. Every x € Z has inverse w.r.t. addition because
VeeZ, x4+ (—z)=(—z)+z=0.

However, very few elements in Z have multiplicative inverses. Namely,

EXAMPLE 8. Let % be an operation on Z defined by
Va,beZ, axb=a+3b—1.

(a) Prove that the operation is binary.

(b) Determine whether the operation is associative and/or commutative. Prove your answers.

(c) Determine whether the operation has identities.

(d) Discuss inverses.
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EXAMPLE 9. Let % be an operation on the power set P(A) defined by
VX,Y € P(A), X*Y =XnNY.

(a) Prove that the operation is binary.

(b) Determine whether the operation is associative and/or commutative. Prove your answers.

(c) Determine whether the operation has identities.

(d) Discuss inverses.
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EXAMPLE 10. Let % be an operation on F(A) defined by

Vf,ge F(A), fxg=fog.

(a) Prove that the operation is binary.

(b) Determine whether the operation is associative and/or commutative.

(c) Determine whether the operation has identities.

(d) Discuss inverses.

PROPOSITION 11. Let x be a binary operation on a nonempty set A. If e is an identity element on
A then e is unique.

Proof.
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PROPOSITION 12. Let * be an associative binary operation on a nonempty set A with the identity e,
and if a € A has an inverse element w.r.t. x, then this inverse element is unique.

Proof.

Closure

DEFINITION 13. Let % be a binary operation on a nonempty set A, and suppose that S C A. If x is
also a binary operation on S then we say that S is closed in A under x.

EXAMPLE 14. Let % be a binary operation on A and let S C A. Using symbols complete the following

(a) S is closed in A under x if and only if

(a) S is not closed in A under x if

EXAMPLE 15. Determine whether the following subsets of Z are closed in Z under addition and mul-
tiplication.

(a) Z*

(b) E

(c) O
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5.1: The Integers: Axioms and Basic Properties

Operations on the set of integers, Z: addition and multiplication with the following properties:

A1l. Addition is associative:

A2. Addition is commutative:

A3. Z has an identity element with respect to addition namely, the integer 0.

A4. Every integer z in Z has an inverse w.r.t. addition, namely, its negative —x :

A5. Multiplication is associative:

A6. Multiplication is commutative:

AT7. 7Z has an identity element with respect to multiplication namely, the integer 1. (and 1 # 0.)

A8. Distributive Law:

REMARK 16. We do not prove A1-A8. We take them as axioms: statements we assume to be true
about the integers.
We use zy instead x - y and x — y instead x + (—y).

PROPOSITION 17. Let a,b,c € Z.

Pl. Ifa+b=a+c then b = c. (cancellation law for addition)
P2. a-0=0-a=0.

P3. (—a)b = a(—b) = —(ab)

P4. —(—a)=a

P5. (—a)(—b) =ab

P6. a(b—c) =ab— ac

P7. (-1)a=—a

P8. (—1)(—1) =1.
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Proof

Z contains a subset Z*, called the positive integers, that has the following properties:

A9. Closure property: Z" is closed w.r.t. addition and multiplication:

A10. Trichotomy Law: for all x € Z exactly one is true:

PROPOSITION 18. Ifx € Z, x # 0, then x> € Z7.

Proof.

COROLLARY 19. Z+ ={1,2,3,...,n,n+1,...}

Proof.
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Inequalities (the order relation less than)

DEFINITION 20. Forx,y € Z, x <y if and only y —x € Z™.

REMARK 21. If x < y, we can also write y > x. We can also write x < y if x < y or x = y. Similarly,
y>zify>zory=ux.

Note that Z* = {n € Z|n > 0}.

EXAMPLE 22. Let x,y € Z. Using symbols complete the following

e r Yy <<=
* >y
e xr<( &
e x>0 &

PROPOSITION 23. Let a,b € Z.

Q1. Ezactly one of the following holds: a < b, b < a, or a =b.
Q2. Ifa >0 then —a < 0; if a < 0 then —a > 0.

Q3. Ifa>0and b>0 thena+b>0 and ab > 0.

Q4. Ifa>0 and b <0 then ab < 0.

Q5. If a <0 and b <0 then ab > 0.

Proof.
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PROPOSITION 24. Let a,b,c € Z.
Q6. Ifa<bandb<cthena <c.
Q7. Ifa<banda+c<b+ec.

Q8. Ifa<band c> 0 then ac < be.

Q9. Ifa <b and c <0 then ac > be.

A1l. The Well Ordering Principle Every nonempty subset on Z™ has a smallest element; that is,
if S is a nonempty subset of Z1, then there exists a € S such that a < x for all x € S.

PROPOSITION 25. There is no integer x such that 0 < z < 1.
Proof.

COROLLARY 26. 1 is the smallest element of Z.

COROLLARY 27. The only integers having multiplicative inverses in Z are £1.



(©) Oksana Shatalov, Spring 2016 11

5.2: Induction!

THEOREM 28. (First Principle of Mathematical Induction) Let P(n) be a statement about the
positive integer n. Suppose that P(1) is true. Whenever k is a positive integer for which P(k) is true,
then P(k+ 1) is true. Then P(n) is true for every positive integer n.

Proof.

Paradox: All horses are of the same color.
Question: What’s wrong in the following “proof” of G. Pdlya?
P(n) : Let n € Z™. Within any set of n horses, there is only one color.
Basic Step. If there is only one horse, there is only one color.
Induction Hypothesis. Assume that within any set of k& horses, there is only one color.
Inductive step. Prove that within any set of k 4+ 1 horses, there is only one color.

Indeed, look at any set of k+ 1 horses. Number them: 1,2,3, ..., k, k+ 1. Consider the subsets
{1,2,3,...,k} and {2,3,4, ...,k + 1}. Each is a set of only k horses, therefore within each there
is only one color. But the two sets overlap, so there must be only one color among all £+ 1
horses.

!see also Chapter 1(Part ITT)



