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4&5 Binary Operations and Relations. The Integers. (part I)

4.1: Binary Operations

DEFINITION 1. A binary operation ∗ on a nonempty set A is a function from A×A to A.

Addition, subtraction, multiplication are binary operations on Z.

Addition is a binary operation on Q because

Division is NOT a binary operation on Z because

Division is a binary operation on

• To prove that ∗ is a binary operation on a set A

• To show that ∗ is not a binary operation on a set A
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Classification of binary operations by their properties

Associative and Commutative Laws

DEFINITION 2. A binary operation ∗ on A is associative if

∀a, b, c ∈ A, (a ∗ b) ∗ c = a ∗ (b ∗ c).

A binary operation ∗ on A is commutative if

∀a, b ∈ A, a ∗ b = b ∗ a.

EXAMPLE 3. Using symbols complete the following

(a) A binary operation ∗ on A is not associative if

(b) A binary operation ∗ on A is not commutative if

Identities

DEFINITION 4. If ∗ is a binary operation on A, an element e ∈ A is an identity element of A w.r.t
∗ if

∀a ∈ A, a ∗ e = e ∗ a = a.

EXAMPLE 5. (a) 1 is an identity element for Z, Q and R w.r.t. multiplication.

(b) 0 is an identity element for Z, Q and R w.r.t. addition.

Inverses

DEFINITION 6. Let ∗ be a binary operation on A with identity e, and let a ∈ A. We say that a is
invertible w.r.t. ∗ if there exists b ∈ A such that

a ∗ b = b ∗ a = e.

If b exists, we say that b is an inverse of a w.r.t. ∗ and write b = a−1.

Note, inverses may or may not exist.
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EXAMPLE 7. Every x ∈ Z has inverse w.r.t. addition because

∀x ∈ Z, x + (−x) = (−x) + x = 0.

However, very few elements in Z have multiplicative inverses. Namely,

EXAMPLE 8. Let ∗ be an operation on Z defined by

∀a, b ∈ Z, a ∗ b = a + 3b− 1.

(a) Prove that the operation is binary.

(b) Determine whether the operation is associative and/or commutative. Prove your answers.

(c) Determine whether the operation has identities.

(d) Discuss inverses.
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EXAMPLE 9. Let ∗ be an operation on the power set P (A) defined by

∀X,Y ∈ P (A), X ∗ Y = X ∩ Y.

(a) Prove that the operation is binary.

(b) Determine whether the operation is associative and/or commutative. Prove your answers.

(c) Determine whether the operation has identities.

(d) Discuss inverses.
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EXAMPLE 10. Let ∗ be an operation on F (A) defined by

∀f, g ∈ F (A), f ∗ g = f ◦ g.

(a) Prove that the operation is binary.

(b) Determine whether the operation is associative and/or commutative.

(c) Determine whether the operation has identities.

(d) Discuss inverses.

PROPOSITION 11. Let ∗ be a binary operation on a nonempty set A. If e is an identity element on
A then e is unique.

Proof.
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PROPOSITION 12. Let ∗ be an associative binary operation on a nonempty set A with the identity e,
and if a ∈ A has an inverse element w.r.t. ∗, then this inverse element is unique.

Proof.

Closure

DEFINITION 13. Let ∗ be a binary operation on a nonempty set A, and suppose that S ⊆ A. If ∗ is
also a binary operation on S then we say that S is closed in A under ∗.

EXAMPLE 14. Let ∗ be a binary operation on A and let S ⊆ A. Using symbols complete the following

(a) S is closed in A under ∗ if and only if

(a) S is not closed in A under ∗ if

EXAMPLE 15. Determine whether the following subsets of Z are closed in Z under addition and mul-
tiplication.

(a) Z+

(b) E

(c) O
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5.1: The Integers: Axioms and Basic Properties

Operations on the set of integers, Z: addition and multiplication with the following properties:

A1. Addition is associative:

A2. Addition is commutative:

A3. Z has an identity element with respect to addition namely, the integer 0.

A4. Every integer x in Z has an inverse w.r.t. addition, namely, its negative −x :

A5. Multiplication is associative:

A6. Multiplication is commutative:

A7. Z has an identity element with respect to multiplication namely, the integer 1. (and 1 6= 0.)

A8. Distributive Law:

REMARK 16. We do not prove A1-A8. We take them as axioms: statements we assume to be true
about the integers.

We use xy instead x · y and x− y instead x + (−y).

PROPOSITION 17. Let a, b, c ∈ Z.

P1. If a + b = a + c then b = c. (cancellation law for addition)

P2. a · 0 = 0 · a = 0.

P3. (−a)b = a(−b) = −(ab)

P4. −(−a) = a

P5. (−a)(−b) = ab

P6. a(b− c) = ab− ac

P7. (−1)a = −a

P8. (−1)(−1) = 1.
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Proof

Z contains a subset Z+, called the positive integers, that has the following properties:

A9. Closure property: Z+ is closed w.r.t. addition and multiplication:

A10. Trichotomy Law: for all x ∈ Z exactly one is true:

PROPOSITION 18. If x ∈ Z, x 6= 0, then x2 ∈ Z+.

Proof.

COROLLARY 19. Z+ = {1, 2, 3, . . . , n, n + 1, . . .}

Proof.
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Inequalities (the order relation less than)

DEFINITION 20. For x, y ∈ Z, x < y if and only y − x ∈ Z+.

REMARK 21. If x < y, we can also write y > x. We can also write x ≤ y if x < y or x = y. Similarly,
y ≥ x if y > x or y = x.

Note that Z+ = {n ∈ Z|n > 0} .

EXAMPLE 22. Let x, y ∈ Z. Using symbols complete the following

• x < y ⇔

• x > y ⇔

• x < 0 ⇔

• x > 0 ⇔

PROPOSITION 23. Let a, b ∈ Z.

Q1. Exactly one of the following holds: a < b, b < a, or a = b.

Q2. If a > 0 then −a < 0; if a < 0 then −a > 0.

Q3. If a > 0 and b > 0 then a + b > 0 and ab > 0.

Q4. If a > 0 and b < 0 then ab < 0.

Q5. If a < 0 and b < 0 then ab > 0.

Proof.
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PROPOSITION 24. Let a, b, c ∈ Z.

Q6. If a < b and b < c then a < c.

Q7. If a < b and a + c < b + c.

Q8. If a < b and c > 0 then ac < bc.

Q9. If a < b and c < 0 then ac > bc.

A11. The Well Ordering Principle Every nonempty subset on Z+ has a smallest element; that is,
if S is a nonempty subset of Z+, then there exists a ∈ S such that a ≤ x for all x ∈ S.

PROPOSITION 25. There is no integer x such that 0 < x < 1.

Proof.

COROLLARY 26. 1 is the smallest element of Z+.

COROLLARY 27. The only integers having multiplicative inverses in Z are ±1.
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5.2: Induction1

THEOREM 28. (First Principle of Mathematical Induction) Let P (n) be a statement about the
positive integer n. Suppose that P (1) is true. Whenever k is a positive integer for which P (k) is true,
then P (k + 1) is true. Then P (n) is true for every positive integer n.

Proof.

Paradox: All horses are of the same color.
Question: What’s wrong in the following “proof” of G. Pólya?

P (n) : Let n ∈ Z+. Within any set of n horses, there is only one color.

Basic Step. If there is only one horse, there is only one color.

Induction Hypothesis. Assume that within any set of k horses, there is only one color.

Inductive step. Prove that within any set of k + 1 horses, there is only one color.

Indeed, look at any set of k+1 horses. Number them: 1, 2, 3, ..., k, k+1. Consider the subsets
{1, 2, 3, ..., k} and {2, 3, 4, ..., k + 1}. Each is a set of only k horses, therefore within each there
is only one color. But the two sets overlap, so there must be only one color among all k + 1
horses.

1see also Chapter 1(Part III)


