4&5 Binary Operations and Relations. The Integers. (part I)

4.1: Binary Operations

DEFINITION 1. A binary operation * on a nonempty set A is a function from $A \times A$ to A.

Addition, subtraction, multiplication are binary operations on Z.

Addition is a binary operation on \mathbf{Q} because

Division is NOT a binary operation on \mathbf{Z} because

Division is a binary operation on

- To prove that * is a binary operation on a set A
- To show that * is <u>not</u> a binary operation on a set A

Classification of binary operations by their properties

Associative and Commutative Laws

DEFINITION 2. A binary operation * on A is associative if

 $\forall a, b, c \in A, \quad (a * b) * c = a * (b * c).$

A binary operation * on A is commutative if

$$\forall a, b \in A, \quad a * b = b * a.$$

EXAMPLE 3. Using symbols complete the following

(a) A binary operation * on A is <u>not</u> associative if

(b) A binary operation * on A is <u>not</u> commutative if

Identities

DEFINITION 4. If * is a binary operation on A, an element $e \in A$ is an identity element of A w.r.t * if

 $\forall a \in A, \quad a * e = e * a = a.$

EXAMPLE 5. (a) 1 is an identity element for \mathbf{Z} , \mathbf{Q} and \mathbf{R} w.r.t. multiplication.

(b) 0 is an identity element for **Z**, **Q** and **R** w.r.t. addition.

Inverses

DEFINITION 6. Let * be a binary operation on A with identity e, and let $a \in A$. We say that a is **invertible** w.r.t. * if there exists $b \in A$ such that

$$a * b = b * a = e$$

If b exists, we say that b is an inverse of a w.r.t. * and write $b = a^{-1}$.

Note, inverses may or may not exist.

EXAMPLE 7. Every $x \in \mathbf{Z}$ has inverse w.r.t. addition because

$$\forall x \in \mathbf{Z}, \quad x + (-x) = (-x) + x = 0.$$

However, very few elements in **Z** have multiplicative inverses. Namely,

EXAMPLE 8. Let * be an operation on \mathbf{Z} defined by

$$\forall a, b \in \mathbf{Z}, \quad a * b = a + 3b - 1.$$

(a) Prove that the operation is binary.

(b) Determine whether the operation is associative and/or commutative. Prove your answers.

(c) Determine whether the operation has identities.

(d) Discuss inverses.

EXAMPLE 9. Let * be an operation on the power set P(A) defined by

$$\forall X, Y \in P(A), \quad X * Y = X \cap Y.$$

(a) Prove that the operation is binary.

(b) Determine whether the operation is associative and/or commutative. Prove your answers.

(c) Determine whether the operation has identities.

(d) Discuss inverses.

EXAMPLE 10. Let * be an operation on F(A) defined by

$$\forall f, g \in F(A), \quad f * g = f \circ g.$$

(a) Prove that the operation is binary.

(b) Determine whether the operation is associative and/or commutative.

(c) Determine whether the operation has identities.

(d) Discuss inverses.

PROPOSITION 11. Let * be a binary operation on a nonempty set A. If e is an identity element on A then e is unique.

Proof.

PROPOSITION 12. Let * be an associative binary operation on a nonempty set A with the identity e, and if $a \in A$ has an inverse element w.r.t. *, then this inverse element is unique.

Proof.

Closure

DEFINITION 13. Let * be a binary operation on a nonempty set A, and suppose that $S \subseteq A$. If * is also a binary operation on S then we say that S is closed in A under *.

EXAMPLE 14. Let * be a binary operation on A and let $S \subseteq A$. Using symbols complete the following (a) S is closed in A under * if and only if

(a) S is <u>not</u> closed in A under * if

EXAMPLE 15. Determine whether the following subsets of \mathbf{Z} are closed in \mathbf{Z} under addition and multiplication.

(a) Z⁺

(b) E

(c) O

5.1: The Integers: Axioms and Basic Properties

Operations on the set of integers, Z: addition and multiplication with the following properties:

- A1. Addition is associative:
- A2. Addition is commutative:

A3. Z has an identity element with respect to addition namely, the integer 0.

A4. Every integer x in Z has an inverse w.r.t. addition, namely, its negative -x:

A5. Multiplication is associative:

- A6. Multiplication is commutative:
- A7. Z has an identity element with respect to multiplication namely, the integer 1. (and $1 \neq 0$.)

A8. Distributive Law:

REMARK 16. We do not prove A1-A8. We take them as **axioms**: statements we *assume* to be true about the integers.

We use xy instead $x \cdot y$ and x - y instead x + (-y).

PROPOSITION 17. Let $a, b, c \in \mathbf{Z}$.

P1. If a + b = a + c then b = c. (cancellation law for addition)

P2.
$$a \cdot 0 = 0 \cdot a = 0$$
.

- **P3.** (-a)b = a(-b) = -(ab)
- **P4.** -(-a) = a
- **P5.** (-a)(-b) = ab

P6. a(b-c) = ab - ac

- **P7.** (-1)a = -a
- **P8.** (-1)(-1) = 1.

Proof

Z contains a subset Z^+ , called the **positive integers**, that has the following properties: A9. Closure property: Z^+ is closed w.r.t. addition and multiplication:

A10. Trichotomy Law: for all $x \in \mathbb{Z}$ exactly one is true:

PROPOSITION 18. If $x \in \mathbf{Z}$, $x \neq 0$, then $x^2 \in \mathbf{Z}^+$. Proof.

COROLLARY 19. $\mathbf{Z}^+ = \{1, 2, 3, \dots, n, n+1, \dots\}$

Proof.

Inequalities (the order relation less than)

DEFINITION 20. For $x, y \in \mathbf{Z}$, x < y if and only $y - x \in \mathbf{Z}^+$.

REMARK 21. If x < y, we can also write y > x. We can also write $x \le y$ if x < y or x = y. Similarly, $y \ge x$ if y > x or y = x. Note that $\mathbf{Z}^+ = \{n \in \mathbf{Z} | n > 0\}$.

EXAMPLE 22. Let $x, y \in \mathbf{Z}$. Using symbols complete the following

- $x < y \quad \Leftrightarrow$
- $x > y \quad \Leftrightarrow$
- $\bullet \ x < 0 \quad \Leftrightarrow \quad$
- $\bullet \ x > 0 \quad \Leftrightarrow \quad$

PROPOSITION 23. Let $a, b \in \mathbf{Z}$.

Q1. Exactly one of the following holds: a < b, b < a, or a = b.

Q2. If a > 0 then -a < 0; if a < 0 then -a > 0.

Q3. If a > 0 and b > 0 then a + b > 0 and ab > 0.

Q4. If a > 0 and b < 0 then ab < 0.

Q5. If a < 0 and b < 0 then ab > 0.

Proof.

PROPOSITION 24. Let $a, b, c \in \mathbf{Z}$.

- **Q6.** If a < b and b < c then a < c.
- **Q7.** If a < b and a + c < b + c.
- **Q8.** If a < b and c > 0 then ac < bc.
- **Q9.** If a < b and c < 0 then ac > bc.
- A11. The Well Ordering Principle Every nonempty subset on \mathbb{Z}^+ has a smallest element; that is, if S is a nonempty subset of Z^+ , then there exists $a \in S$ such that $a \leq x$ for all $x \in S$.

PROPOSITION 25. There is no integer x such that 0 < x < 1.

Proof.

COROLLARY 26. 1 is the smallest element of \mathbf{Z}^+ . COROLLARY 27. The only integers having multiplicative inverses in \mathbf{Z} are ± 1 .

5.2: Induction¹

THEOREM 28. (First Principle of Mathematical Induction) Let P(n) be a statement about the positive integer n. Suppose that P(1) is true. Whenever k is a positive integer for which P(k) is true, then P(k+1) is true. Then P(n) is true for every positive integer n.

Proof.

Paradox: All horses are of the same color. Question: What's wrong in the following "proof" of G. Pólya?

P(n): Let $n \in \mathbb{Z}^+$. Within any set of n horses, there is only one color.

Basic Step. If there is only one horse, there is only one color.

Induction Hypothesis. Assume that within any set of k horses, there is only one color.

Inductive step. Prove that within any set of k + 1 horses, there is only one color.

Indeed, look at any set of k + 1 horses. Number them: 1, 2, 3, ..., k, k + 1. Consider the subsets $\{1, 2, 3, ..., k\}$ and $\{2, 3, 4, ..., k + 1\}$. Each is a set of only k horses, therefore within each there is only one color. But the two sets overlap, so there must be only one color among all k + 1 horses.

¹see also Chapter 1(Part III)