4\&5 Binary Operations and Relations. The Integers (part II)

5.3: The Division Algorithm And Greatest Common Divisor

THEOREM 1. (Division Algorithm) Let $a \in \mathbf{Z}, b \in \mathbf{Z}^{+}$. Then there exist unique integers q and r such that

$$
a=b q+r, \quad \text { where } \quad 0 \leq r<b
$$

EXAMPLE 2. (a) Rewrite the Division Algorithm using symbols.
(b) Let $a=33, b=7$. Determine q and r.
(b) Let $a=-33, b=7$. Determine q and r.

COROLLARY 3. Let $b \in \mathbf{Z}^{+}$. Then for every integer a there exists a unique integer q such that exactly one of the following holds:

$$
a=b q, \quad a=b q+1, \quad a=b q+2, \ldots, a=b q+(b-1)
$$

COROLLARY 4. Every integer is either even, or odd.

Divisors (see Chapter 1, part II of notes)

Recall the following
DEFINITION 5. Let a and b be integers. We say that b divides a, written $b \mid a$, if there is an integer c such that $b c=a$. We say that b and c are factors of a, or that a is divisible $b y b$ and c.

Recall the following divisibility properties.
PROPOSITION 6. Let $a, b, c \in \mathbf{Z}$.
(a) If $a \mid 1$, then $a= \pm 1$.
(b) If $a \mid b$ and $b \mid a$, then $a= \pm b$.
(c) If $a \mid b$ and $a \mid c$, then $a \mid(b x+c y)$ for any $x, y \in \mathbf{Z}$.
(d) If $a \mid b$ and $b \mid c$, then $a \mid c$.

Greatest common divisor (gcd)

DEFINITION 7. Let a and b be integers, not both zero. The greatest common divisor of a and b (written $\operatorname{gcd}(a, b)$, or $(a, b))$ is the largest positive integer d that divides both a and b.

EXAMPLE 8. Find $\operatorname{gcd}(18,24)$.

EXAMPLE 9. (a) Compute

$$
\operatorname{gcd}(-18,24)=\quad \operatorname{gcd}(-24,-18)=
$$

and make a conclusion.
(b) Compute

$$
\operatorname{gcd}(5,0)=\quad \operatorname{gcd}(-5,0)=
$$

and make a conclusion.
(c) Complete the statement: If $a \neq 0$ and $b \neq 0$, then $\operatorname{gcd}(a, b) \leq$ \qquad
(d) Let $c \in \mathbf{Z}$. Then $\operatorname{gcd}(a, a c)=$ \qquad
Euclidean Algorithm is based on the following two lemmas:
LEMMA 10. Let a and b be two positive integers. If $a \mid b$ then $\operatorname{gcd}(a, b)=|a|$.

LEMMA 11. Let a and b be two positive integers such that $b \geq a$. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, b-a)$. Proof.

COROLLARY 12. Let a and b be integers, not both zero. Suppose that there exist integers q_{1} and r_{1} such that $b=a q_{1}+r_{1}, 0 \leq r_{1}<a$. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}\left(a, r_{1}\right)$.

Procedure for finding gcd of two integers (the Euclidean Algorithm)

EXAMPLE 13. Find $\operatorname{gcd}(1176,3087)$.

EXAMPLE 14. Find integers x and y such that $147=1176 x+3087 y$.

COROLLARY 15. If $d=\operatorname{gcd}(a, b)$ then there exist integers x and y such that $a x+b y=d$. Moreover, d is the minimal natural number with such property.

Relatively prime (or coprime) integers
DEFINITION 16. Two integers a and b, not both zero, are said to be relatively prime (or coprime), if $\operatorname{gcd}(a, b)=1$.

For example,

Combining the above definition and the proof of Corollary 15, we obtain
THEOREM 17. a and b are relatively prime integers if and only if there exist integers x and y such that $a x+b y=1$.

THEOREM 18. Let $a, b, c \in \mathbf{Z}$. Suppose $a \mid b c$ and $\operatorname{gcd}(a, b)=1$. Then $a \mid c$.
Proof.

5.4: Primes and Unique Factorization

DEFINITION 19. An integer p greater than 1 is called a prime number if the only divisors of p are ± 1 and $\pm p$. If an integer greater than 1 is not prime, it is called composite.

-7	-4	0	1	2	4	7	10209

Sieve of Eratosthenes.

The method to find all primes from 2 to n.

1. Write out all integers from 2 to n.
2. Select the smallest integer p that is not selected or crossed out.
3. Cross out all multiples of p (these will be $2 p, 3 p, 4 p, \ldots$; the p itself should not be crossed out).
4. If not all numbers are selected or crossed out return to step 2. Otherwise, all selected numbers are prime.

EXAMPLE 20. Find all two digit prime numbers.

	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	

REMARK 21. It is sufficient to cross out the numbers in step 3 starting from p^{2}, as all the smaller multiples of p will have already been crossed out at that point. This means that the algorithm is allowed to terminate in step 4 when p^{2} is greater than n. In other words, if the number p in step 2 is greater than \sqrt{n} then all numbers that are already selected or not crossed out are prime.

Prime Factorization of a positive integer n greater than 1 is a decomposition of n into a product of primes.

Standard Form $n=p_{1} p_{2} \cdots p_{k}$, where primes $p_{1}, p_{2}, \ldots, p_{k}$ satisfy $p_{1} \leq p_{2} \leq \ldots \leq p_{k}$
Compact Standard Form $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{m}^{\alpha_{m}}$, where primes $p_{1}, p_{2}, \ldots, p_{m}$ satisfy $p_{1}<p_{2}<\ldots<p_{m}$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in \mathbf{Z}$.

EXAMPLE 22. Write 1224 and 225 in a standard form (i.e. find prime factorization).

LEMMA 23. Let a and b be integers. If p is prime and divides $a b$, then p divides either a, or b. (Note, p also may divide both a and b.)

Proof.

COROLLARY 24. Let $a_{1}, a_{2}, \ldots, a_{n}$ be integers.If p is prime and divides $a_{1} a_{2} \ldots a_{n}$, then p divides at least one integer from $a_{1}, a_{2}, \ldots, a_{n}$.

Note that Lemma 23 corresponds to $n=2$. General proof of the above Corollary is by induction.
THEOREM 25. (Second Principle of Mathematical Induction) Let $P(n)$ be a statement about the positive integer n. Suppose that $P(1)$ is true. Whenever k is a positive integer for which $P(i)$ is true for every positive integer i such that $i \leq k$, then $P(k+1)$ is true. Then $P(n)$ is true for every positive integer n.

THEOREM 26. Unique Prime Factorization Theorem. Let $n \in \mathbf{Z}, n>1$. Then n is a prime number or can be written as a product of prime numbers. Moreover, the product is unique, except for the order in which the factors appears.

Proof.
Existence: Use the Second Principle of Mathematical Induction.
$P(n)$:
Basic step:
Induction hypothesis:

Inductive step:

Uniqueness Use the Second Principle of Mathematical Induction.
$P(n)$:

Basic step:
Induction hypothesis:

COROLLARY 27. There are infinitely many prime numbers.
Proof.

EXAMPLE 28. Prove that if a is a positive integer of the form $4 n+3$, then at least one prime divisor of a is of the form $4 n+3$.

Proof.

