11.2: Vectors and the Dot Product in Three Dimensions

DEFINITION 1. A 3-dimensional vector is an ordered triple a = (a1, a2, a3)
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Given the points P(zy, 1, 21) and Q(xa, 12, 22), the vector a with representation P_(é 18
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The representation of the vector that starts at the point O(0,0,0) and ends at the point
P(xy,y1, ) is called the position vector of the point P.
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EXAMPLE 2. Find the vector represented by the directed line segment with the -zf-n-zft-_zfgf point
A(1,2,3) and terminal point B(3,2, —1). What is the position vector of the point A? = OR® (‘,1;3)

EFB = &73 - 5/2 = <3,2,/l> — 3
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Vector Arithmetic: Let a = (a1, az,a3) and b = (b, b2, bs).

e Scalar Multiplication: aa = (aay, aaq, aas), a € R,

e Addition: a+b = (a; + by, as + ba, az + bs)
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Two vectors a and b are parallel if one is a scalar multiple of the other, i.e. there exists a € R
s.t. b = aa. Equivalently: -
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The magnitude or length of a = (a;,a,,a3):

la| = \/a? + a3 + 2.

Y
Zero vector: 0= (0,0,0), |0] =0.
Note that |a] =0 < a = 0.

Unit vector: a= —
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Standard Basis Vectors: R ?
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k =1(0,0,1) ,'
Note that [i| = |j| = |k| = 1. *'/
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EXAMPLE 3. Given a = (1,0,—3) and b = (3,1,2). Find

(a) [b—al. 2-(-3)
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(b) a unit vector that has the same direction as b. b
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Dot Product of two nonzero vectors a and b is the]NUMBER:

a-b=]al|b|cos8,

where # is the angle between a and b, 0 < 8 < 7.
fa=0orb=0thena-b=0 "

Component Formula for dot product of a = (a;,a3,a3) and b = (b, by, b3)

a-b=ab + azbs + asbs.
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If 4 is the angle between two nonzero vectors a and b, then
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DEFINITION 4. Two nonzero vectors a and b are called perpendicular or orthogonal if the

angle between them is § = w/2.
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EXAMPLE 6. For what value(s) of ¢ are the vectors ci+ 2j + k and 4i + 3j + ck orthogonal?
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EXAMPLE 7. The points A(6,—1,0), B(—3,1,2), C'(2,4,5) form a triangle. and (m%ie at A.
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Projections:

e Scalar projection of vector b onto vector a: |comp,b =
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e Vector projection of vector b onto vector a:
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EXAMPLE 8. Find the scalar and vector projections of (2,—2 — 1) onto (3,3,4).
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DEFINITION 8. The work done by a force ¥ in moving and object from point A to point B is
given by

W=F-D

where D = zﬁ is the distance the object has moved (or displacement).

EXAMPLE 9. A force is given by a vector ¥ =i — j+ bk and moves a particle from the point
P(1,2,0) to the point Q(2,3,5). Find the work done.

D= 1;3 - 0§ — 08= ¢2,3,57=¢ 2,0>=¢),, 5

W = E -B =<l,—|, 5+ Z1,1,5> =1-) +2S =5
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