7.4: Work

PROBLEM: Find the amount of work that is done by a force in moving an object.

 \bullet Case 1: <u>constant force.</u>

Work W done in moving an object a distance d meters is given by

$$W = Fd$$
.

In the SI metric system: [J] = [N][m]

In the British engineering system: [ft][lb]. Also $1ft-lb \approx 1.36J$.

EXAMPLE 1. How much work is done in lifting your Calculus book (2.1kg) off the floor to put it on a desk that is 0.6m high.

=> W = 2.1.0.6.9.8=12.348]

Title: Sep 12-11:43 PM (Page 1 of 5)

Title: Sep 9-11:12 PM (Page 2 of 5)

EXAMPLE 3. A spring has a natural length of 1m. If a 50N force is required to keep it stretched to a length 3m, how much work is done in stretching the spring from 2m to 5m?

Solution By Hooke's law the force required to stretch a spring \underline{x} units \underline{b} beyond its natural

EXAMPLE 4. If the work required to stretch a spring 1ft beyond its natural length is 12ft-lb, how much work is needed to stretch it 9 inches beyond its natural length?

Title: Sep 12-11:49 PM (Page 3 of 5)

Title: Sep 12-11:53 PM (Page 4 of 5)

EXAMPLE 6. A uniform cable hanging over the edge of a tall building is <u>20ft</u> long and weight 30lb. How much work is required to pull 5ft of the cable to the top?

REMARK 10. The exact height of the building doesn't matter.