7.4: Work

PROBLEM: Find the amount of work that is done by a force in moving an object.

- Case 1: constant force.

Work W done in moving an object a distance d meters is given by

$$
W=F d
$$

In the SI metric system: $[J]=[N][m]$
In the British engineering system: $[\mathrm{ft}][\mathrm{lb}]$. Also $1 \mathrm{ft}-\mathrm{lb} \approx 1.36 \mathrm{~J}$.
EXAMPLE 1. How much work is done in lifting your Calculus book (2. 1kg) off the floor to put it on a desk that is 0.6 m high.

$$
\left.\begin{array}{rl}
W & =f \cdot d=(m g) \cdot d \\
m & =2.1 \mathrm{~kg} \\
d & =0.6 \mathrm{~m} \\
g & =9.8 \mathrm{~m} / \mathrm{s}^{2} \\
\Rightarrow W & =2.1 \cdot 0.6 \cdot 9.8=12.348 \mathrm{~J}
\end{array}\right\} \Rightarrow
$$

Title : Sep 12-11:43 PM (Page 1 of 5)

- Case 2: non constant force. (It requires integration.)

$$
\begin{aligned}
W_{k} & =F\left(x_{k}^{*}\right)\left(x_{k}-x_{k-1}\right)=\underset{F\left(x_{k}^{*}\right)}{\underline{\mathrm{F}}} \underset{x_{k}}{\underline{d}} \\
W & \approx \sum_{k=1}^{n} W_{k}=\sum_{k=1}^{n} F\left(x_{k}^{*}\right) \Delta x_{k}
\end{aligned}
$$

Riemann sum

Finally, $W=\lim _{\|P\| \rightarrow 0} \frac{\text { Riemeann sum }}{\sum_{k=1}^{n} F\left(x_{k}^{*}\right) \Delta x_{k}}$ where $\|P\|=\max _{k}\left\langle x_{k}\right|$

Thus, work done in moving an object from $x=a$ to $x=b$ is

$$
W=\int_{a}^{b} F(x) \mathrm{d} x
$$

$f(x)$

EXAMPLE 2. When a particle is at distance x feet from the origin ${ }_{\mathbf{b}}$ a force of $3 x^{2}+2 x$ pounds acts on it. How much work is done in moving it from $x=1$ to $x=3$ along the x-axis?

$$
|N|=\int_{a}^{b} f(x) d x=\int_{1}^{3}\left(3 x^{2}+2 x\right) d x=\ldots=34 \mathrm{ft}-\mathrm{lb}
$$

EXAMPLE 3. A spring has a natural length of 1 m . If a 50 N force is required to keep it stretched to a length $3 m$, how much work is done in stretching the spring from $2 m$ to $5 m$?

Solution By Hooke's law the force required to stretch a spring x units beyond its natural length is

$$
\begin{aligned}
& \text { Given } \\
& F(2)=50 \\
& K \cdot 2=50 \\
& K=25
\end{aligned}
$$

emulate the problem in Example 3:

 beyond its natural length? \qquad

$$
\begin{aligned}
W & =\int_{1}^{4} f(x) d x \\
W & =\int_{1}^{1} k x d x \\
W=25 \int_{1}^{4} x d x & =\left.25 \frac{x^{2}}{2}\right|_{1} ^{4} \\
& =187.5 \mathrm{~J}
\end{aligned}
$$

EXAMPLE 4. If the work required to stretch a spring 1 ft beyond its natural length is 12 ft -lb, how much work is needed to stretch it 9 inches beyond its natural length?

$$
\frac{9}{12} \mathrm{ft}=\frac{3}{4} \mathrm{ft} \quad \frac{3}{4}
$$

$$
\begin{aligned}
& \text { Given } 1 \\
& 12=\int_{0}^{1} k x d x \\
& 12=k \cdot \frac{1}{2} \Rightarrow k=24 \quad \begin{aligned}
W & =\int_{0}^{\frac{4}{4}} k x d x \\
& =24 \int_{0}^{3 / 4} x d x \\
& =24 \cdot \frac{1}{2} \cdot\left(\frac{3}{4}\right)^{2}=\frac{27}{4} \mathrm{ft} \cdot \mathrm{llb}^{2}
\end{aligned}
\end{aligned}
$$

EXAMPLE 5.

EXAMPLE 5. A tank has a shape of an inverted circular cone with height 10 m and base radius 5 m . It is filled with water to a height of 8 m . Find the work required to empty the tank by pumping all of the water to the top of the tank. (The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.)

$$
\begin{aligned}
& V_{k} \approx A\left(y_{k}^{*}\right) \Delta y_{k} \\
& F_{k} \approx m_{k} g=\rho V_{k} g=\rho g A\left(y_{k}^{*}\right) \Delta y_{k} \\
& W_{k} \approx F_{k} \cdot \underbrace{\left(10-y_{k}^{*}\right)} \\
& W \approx \sum_{k=1}^{n} W_{k}=\sum_{k=1}^{n} \rho g A\left(y_{k}^{*}\right)\left(10-y_{k}^{*}\right) \Delta y_{k} \\
& W=\int_{0}^{8} \rho g A(y)(10-y) d y \\
& A(y)=\binom{\text { arete of the circle }}{\text { with radius } \left.=x=\frac{y}{2}\right)}=\pi \frac{y^{2}}{4}
\end{aligned}
$$

hie
x, the Lu we what es shive
F

$$
0
$$

Title : Sep 12-11:53 PM (Page 4 of 5)

EXAMPLE 6. A uniform cable hanging over the edge of a tall building is 20 ft long and weight 30lb. How much work is required to pull 5 ft of the cable to the top?

REMARK 7. The exact height of the building doesn't matter.

REMARK 10. The exact height of the building doesn't matter.

