1. The graph of a function \(f \) is given.

(a) Estimate the value of \(f(2) \).

(b) Estimate the value of \(f(-1) \).

(c) For what value(s) of \(x \) is \(f(x) = 1 \)?

(d) Estimate the value of \(x \) such that \(f(x) = 0 \).

(e) Give the domain and range of \(f \).

(f) On what interval(s) is \(f \) increasing?

2. Determine whether the curve is a graph of a function of \(x \). State the domain and range.

3. Evaluate the difference quotient \(\frac{f(a+h) - f(a)}{h} \) for \(f(x) = \frac{2}{x + 1} \).
4. Find the domain of \(g(x) = \frac{\sqrt[3]{x-2}}{x^2 - 5x + 6} \).

5. Find the domain of \(h(x) = \frac{x - 3}{\sqrt{x^3 - 4x}} \).

6. Sketch the graph of \(F(x) = \begin{cases} x^2 - 1 & \text{if } x < 1 \\ x + 2 & \text{if } x \geq 1 \end{cases} \).

7. A rectangle has area 25 m\(^2\). Express the perimeter of the rectangle as a function of the length of one of its sides.

8. Determine whether \(f \) is even, odd, or neither: \(f(x) = 1 + 3x^3 - x^5 \)
9. Classify each of the functions below as a power function, root function, polynomial function, rational function, algebraic function, trigonometric function, exponential function, and/or logarithmic function.

\[G(x) = \pi^x \quad f(x) = \cos x \cot x \quad h(x) = \frac{3x^4 - 1}{1 - x} \]

\[F(x) = 2.3x^3 - 2x^2 + \sqrt{x} \quad g(x) = x^n \quad H(x) = 3x^{\sqrt{x}} \]

10. A study of deer ticks found a relationship between the density of acorns produced in the fall and the density of deer tick larvae the following spring. With 10 acorns per square meter in the fall, there were 570 ticks larvae per 400 square meters the following spring. With 15 acorns, there were 740 tick larvae per 400 square meters.

(adapted from Lial, Greenwell, & Ritchey, Finite Mathematics and Calculus with Applications, 2002, p. 18)

(a) Find a linear equation that models the number of tick larvae, \(T \), per 400 square meters as a function of the number of acorns, \(A \), per square meter the previous fall.

(b) What is the slope of the graph? What does it represent?

(c) If 30 acorns per square meter are found in the fall, what is the expected number of tick larvae the following spring?
11. The following data show the connection between blood sugar levels and cholesterol levels for 8 different patients.
(adapted from Lial, Greenwell, & Ritchey, *Finite Mathematics and Calculus with Applications*, 2002, p. 46)

<table>
<thead>
<tr>
<th>Patient</th>
<th>Blood Sugar Level (x)</th>
<th>Cholesterol Level (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130</td>
<td>170</td>
</tr>
<tr>
<td>2</td>
<td>138</td>
<td>160</td>
</tr>
<tr>
<td>3</td>
<td>142</td>
<td>173</td>
</tr>
<tr>
<td>4</td>
<td>159</td>
<td>181</td>
</tr>
<tr>
<td>5</td>
<td>165</td>
<td>201</td>
</tr>
<tr>
<td>6</td>
<td>200</td>
<td>192</td>
</tr>
<tr>
<td>7</td>
<td>210</td>
<td>240</td>
</tr>
<tr>
<td>8</td>
<td>250</td>
<td>290</td>
</tr>
</tbody>
</table>

(a) Make a scatter plot of these data and decide whether a linear model is appropriate.

(b) Find and graph a line model using the first and last data points.

(c) Find and graph the least squares regression line.

(d) Use the linear model in part (c) to estimate the cholesterol for a blood sugar level of 150.

(e) Use the linear model in part (c) to estimate the blood sugar level for a cholesterol level of 260.
12. The graph of \(f \) is given below.

![Graph of f](image)

Use the graph of \(f \) to graph the following functions.

(a) \(y = f(\frac{1}{2}x) \)
(b) \(y = 2f(x) + 1 \)
(c) \(y = -f(x - 2) \)

13. Use parent functions and transformations to graph

(a) \(y = x^2 - 4x + 3 \)
(b) \(y = |x + 1| - 2 \)
(c) \(y = 2\sqrt{x} - 1 \)
14. For \(f(x) = 3x - 1 \) and \(g(x) = \sqrt{x} + 1 \), find \(f \circ g \) and \(g \circ f \) and their domains:

15. Express the function in the form \(f \circ g \circ h \)

\[
H(x) = \sqrt[3]{e^x - 2}
\]