Math 131 Week in Review
Sections 1.5-1.6, 2.1
03/10

1. Use the laws of exponents to simplify each of the following:

(a) \(\frac{(6x^2y^3)^2}{\sqrt{x}} \)
\[\frac{6^2x^4y^6}{x^{1/2}} = 216x^{7/2}y^5 \]

(b) \((a^{-1}b^2)^{n+1} \)
\[= a^{-n-1}b^{2n+2} \]

2. Explain the relationship between the graphs of the functions below:

- \(y = 3^x \)
- \(y = 6^x \)
- \(y = 15^x \)
- \(y = 2^x \)

As base gets larger, the graph rises faster.

all go through \((0,1)\) and \((1,b)\) where \(b\) is the base.
3. Starting with the graph of \(f(x) = e^x \), write the function \(g \), resulting from reflecting the graph about the line \(y = 2 \) and translating right 3 units. Sketch the graphs of \(f \) and \(g \).
4. Find the domain of each function.

\[f(x) = \frac{1}{\sqrt{1 - 2^x}} \]

\[g(x) = \frac{1 + 2x}{1 - x^2} \]

5. The half-life of sodium-24, ^{24}Na, is 15 hours.

(a) If a sample has a mass of 30 mg, find the amount remaining after 45 hours.

\[A(t) = 30 \left(\frac{1}{2}\right)^{t/15} \]

(b) Find the amount remaining after 1 hour.

\[A(15) = 30 \left(\frac{1}{2}\right)^{t/15} \approx 3.625 \text{ mg} \]

(c) Estimate the amount remaining after 2 days.

\[A(48) = 30 \left(\frac{1}{2}\right)^{t/15} \]

(d) Estimate the time required for the mass to be reduced to 2 mg.

\[2 = 30 \left(\frac{1}{2}\right)^{t/15} \]

\[\frac{1}{15} = \left(\frac{1}{2}\right)^{t/15} \]

\[\ln \frac{1}{15} = \ln \left(\frac{1}{2}\right) \]

\[\ln \frac{1}{15} = \frac{1}{15} \ln (0.5) \]

\[15 \ln \frac{1}{15} = t \ln (0.5) \]

\[t = \frac{15 \ln (0.5)}{\ln (0.5)} \]

\[t = 58.6 \text{ hours} \]
6. Determine whether the following functions are one-to-one.

(a) \(f(x) = x^2 + 3x - 2 \)

\(f\) is not one-to-one because it does not pass the horizontal line test.

(b) \(g(x) = \frac{1}{x} \)

\(g\) is one-to-one because it passes the horizontal line test twice.

(c) \(h(x) = \sqrt{x} \)

\(h\) is not one-to-one because it does not pass the horizontal line test.
7. Find the inverse of \(g(x) = \frac{2x+1}{3x-4} \)

\[
\begin{align*}
x &= \frac{2y+1}{3y-4} \\
x(3y-4) &= 2y+1 \\
3xy-4x &= 2y+1 \\
3xy-4x &= 2y+1 \\
x &= \frac{1+4x}{3x-2} \\
g^{-1}(x) &= \frac{1+4x}{3x-2}
\end{align*}
\]

8. Find the inverse of \(h(x) = \ln(x-2)+1 \)

\[
\begin{align*}
x &= \ln(y-2)+1 \\
x-1 &= \ln(y-2) \\
\frac{x}{1} &= \frac{y-2}{1} \\
e^x &= y-2 \\
y &= e^{x+2}
\end{align*}
\]

9. Sketch the inverse of the function graphed below.

To place the line \(y=x \) properly, we must assume the \(x \)- and \(y \)-scale are the same.
10. If \(f(x) = x^2 - 3x + 1 \), find \(f^{-1}(1) \) and \(f^{-1}(-1) \).

\(f^{-1} \) is the inverse function.

- \(f^{-1}(1) \) is the \(x \)-value where \(f(x) = 1 \).
- \(f^{-1}(-1) \) is the \(x \)-value where \(f(x) = -1 \).

\[f'(1) = 2x - 3 \]
\[f'(2) = 1 \]
\[f'(3) = 0 \]
\[f'(4) = 3 \]

Note: the inverse is not a function. It is a relation.

11. The graph of \(f \) is given.

a. What are the domain and range of \(f^{-1} \)?

- Domain: \((-\infty, \infty) \)
- Range: \((-3, 4) \)

b. Estimate the value of \(f^{-1}(3) \).

c. Estimate the value of \(f^{-1}(0) \).

Looking for \(x \)-values of \(f \) same as \(y \)-values of \(f^{-1} \).
12. Find the inverse of \(f(x) = \frac{e^x}{1-2e^x} \).

\[
\begin{align*}
x = \frac{e^y}{1-2e^y} \\
x(1-2e^y) = e^y \\
x - 2xe^y = e^y \\
e^y + 2xe^y = x
\end{align*}
\]

\[
\begin{align*}
e^y(1+2x) &= x \\
e^y &= \frac{x}{1+2x} \\
\ln e^y &= \ln \frac{x}{1+2x} \\
y &= \ln \frac{x}{1+2x}
\end{align*}
\]

13. Find the exact value of each of the following:

(a) \(2 \log_6 36\)
(b) \(\ln \frac{1}{e}\)
(c) \(\log \sqrt[3]{10}\)

\[
\begin{align*}
2 \log_6 36 &= 2 \log_6 6^2 = 2 \cdot 2 = 4 \\
\ln \frac{1}{e} &= -1 \\
\log \sqrt[3]{10} &= \log 10^{\frac{1}{3}} = \frac{1}{3}
\end{align*}
\]

14. Express as a single logarithm: \(\log_2 \sin x + \log_2 (x+3) - \frac{1}{2} \log_2 5\)

\[
\begin{align*}
\log_2 \left[\frac{(x+3) \sin x}{\sqrt[3]{5}}\right] &- \frac{1}{2} \log_2 5 \quad \text{Law 1} \\
= \log_2 \left[\frac{(x+3) \sin x}{\sqrt[3]{5}}\right] - \log_2 5^\frac{1}{2} \quad \text{Law 3} \\
= \log_2 \left[\frac{(x+3) \sin x}{\sqrt[3]{5}}\right] - \log_2 \sqrt[3]{5} \\
= \log_2 \left(\frac{(x+3) \sin x}{\sqrt[3]{5}}\right) \quad \text{Law 2} \\
= \log_2 \left(\frac{5(x+3) \sin x}{5}\right) \quad \text{simplest radical form}
\end{align*}
\]
15. Solve for x: \[\frac{\ln x - \ln (x+2)}{x+2} = 1 \]

\[e^x + 2e = x \]
\[xe - x = -2e \]
\[x(e-1) = 2e \]
\[x = \frac{2e}{e-1} \]

Since the value is \(< 0 \), there is no solution.

16. Solve for x: \[e^{2x} + 3e^x = 10 \]

Let \(e^x = y \)

\[y^2 + 3y - 10 = 0 \]
\[(y+5)(y-2) = 0 \]

\(y = 5 \) or \(y = -2 \)

Since \(y = 5 \),

\[x = \ln 5 \]

17. Solve for x: \[e^{2x^2} > 5 \]

\[\ln e^{2x^2} > \ln 5 \]
\[2x^2 > \ln 5 \]
\[x^2 > \frac{\ln 5}{2} \]
\[x > \frac{1}{2} \ln 5 + \frac{3}{2} \]

or \[x > \ln \sqrt{5} + 1.5 \]
18. The table shows the position of a walker.

<table>
<thead>
<tr>
<th>t (seconds)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>x (yards)</td>
<td>0</td>
<td>2.5</td>
<td>6.5</td>
<td>12</td>
<td>15.5</td>
<td></td>
</tr>
</tbody>
</table>

Find the average velocity for each time period.

(a) \([1, 3]\)

\[
\text{Average velocity} = \frac{9.5 - 2.5}{3-1} = \frac{7}{2} = 3.5 \text{ yards/sec}
\]

(b) \([2, 3]\)

\[
\text{Average velocity} = \frac{9.5 - 6.5}{3-2} = 3 \text{ yards/sec}
\]

(c) \([3, 4]\)

\[
\text{Average velocity} = \frac{12 - 9.5}{4-3} = 2.5 \text{ yards/sec}
\]