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Abstract
A quantum system Σ n( ) with variables in  n( ), where = ∏n pi (with pi
prime numbers), is considered. The non-near-linear geometry G n( ) of the
phase space  ×n n( ) ( ), is studied. The lines through the origin are fac-
torized in terms of ‘prime factor lines’ in  ×p p( ) ( )i i . Weak mutually
unbiased bases (WMUB) which are products of the mutually unbiased bases in
the ‘prime factor Hilbert spaces’ H p( )i , are also considered. The factorization
of both lines and WMUB is analogous to the factorization of integers in terms
of prime numbers. The duality between lines and WMUB is discussed. It is
shown that there is a partial order in the set of subgeometries of G n( ), iso-
morphic to the partial order in the set of subsystems of Σ n( ).
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1. Introduction

There has been much work on finite quantum systems Σ n( ) with variables in  n( ) (the
integers modulo n) [1–6], and mutually unbiased bases (MUB) [7–22]. When n is a prime
number,  n( ) is a field and the number of MUB is +n 1. When =n pe (a power of a prime
number), the use of the Galois field GF p( )e leads to +n 1 MUB. In the case that n is not a
power of a prime number,  n( ) is a ring and it is a very difficult problem to find the number
of MUB in this case. In view of this, [23, 24] have introduced the concept of weak mutually
unbiased bases (WMUB), where

α β α β∣〈 ∣ 〉∣ = ∈θ ϕX X
m

m n n; ;
1

; ; , ( ). (1)2

Here θX is not a variable, but a label of the particular basis. The strict requirement in MUB
that this overlap should be equal to n1 is replaced here by the weaker requirement that the
overlap should be m1 , where m is a divisor of n. For simplicity, n is taken in this paper to be
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the product of prime numbers to the power one:

= × ⋯ ×n p p . (2)N1

The  n( ) is isomorphic to  × ⋯ ×p p( ) ( )N1 and the Chinese remainder theorem
provides bijective maps between the two. Using these maps quantum states in Σ n( ) can be
factorized in terms of quantum states in Σ Σp p( ),..., ( )N1 [25, 26]. The WMUB are tensor
products of MUB in each of the spaces Σ p( )i ( =i N1,..., ). Since pi is a prime number, there
are +p 1i MUB in Σ p( )i and therefore the total number of WMUB is ψ = ∏ +n p( ) ( 1)i ,
where ψ n( ) is the Dedekind psi function. An important feature of the WMUB is that they are
intimately linked to properties of lines in the phase space  ×n n( ) ( ) of Σ n( ), which is a
finite geometry. We note that most of the mathematical work on finite geometries [27–29] is
on near-linear geometries, which have the axiom that two lines have at most one point in
common. The  ×n n( ) ( ) geometry is based on rings and it does not obey this axiom. Two
lines have in common m points, where m n| , and we call this a ‘subline’. It has been shown in
[24] that there is a duality between the lines and WMUB. Other work on finite geometries for
finite quantum systems has been presented in [30–33].

When m n| ,  m( ) is a subgroup of  n( ), and the states of Σ m( ) can be embedded into the
states of Σ n( ), as dicussed later. We express this by saying that Σ m( ) is subsystem of Σ n( ).
We define the partial order ‘subsystem’ and the partial order ‘subgeometry’ and show an
isomorphism between them. This shows a deeper connection between finite quantum systems
and the geometries of their phase spaces, which includes a duality between lines and WMUB.

In section 2 we present the notation. In section 3 we discuss the relevant finite geome-
tries, with emphasis on their partial ordering. In section 4, we discuss the WMUB in finite
systems, with emphasis again on their partial ordering. We also prove the duality between
lines in finite geometries and WMUB in the Hilbert spaces. We conclude in section 5, with a
discussion of our results.

2. Preliminaries

(1)  n( ) is the ring of integers modulo n. For simplicity, n is taken to be the product of prime
numbers to the power one, as in equation (2).

(2)  n*( ) is the reduced system of residues modulo n. Its cardinality is φ n( ) (the Euler

totient function).  n*( ) contains the invertible elements of  n( ), and  −n n( ) *( ) the
non-invertible elements.

(3) ψ n( ) is the Dedekind psi function. If = ∏n pi, where pi are primes different from each
other, then ψ = ∏ +n p( ) ( 1)i .

(4) Throughout the paper, we have several partial orders and for simplicity we use the same
symbol ≺ for all of them.

(5)  n( ) is the set of divisors of n.  n( ) is a poset with divisibility as partial order. We use
the notation ≺a b or a b| for ‘a divisor of b’. The cardinality of  n( ) is the divisor
function σ n( )0 .

(6) If ≺k m then  k( ) is a subgroup of  m( ). Let

 = ∈Z n m m n( ) { ( ) ( )}. (3)

The set Z n( ) contains all subgroups of  n( ), and it is a poset with subgroup as partial
order. The posets  n( ) and Z n( ), are isomorphic to each other.
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The elements of  m( ) are embedded into  n( ) (for ≺m n), as follows

 α α∋ → ∈m
n

m
n( ) ( ). (4)

In order to emphasize this embedding sometimes we say that α ∈ m( )n

m
.

(7) ν μGCD( , ) denotes the greatest common divisor.

3. The non-near-linear geometry G nð Þ and its subgeometries

A finite geometry =G n P n L n( ) ( ( ), ( )) is a pair comprised of the set of points P n( ) and the
set of lines L n( ) (in this paper we are interested in the lines through the origin only). P n( ) is
the set

= ∈P n a b a b n( ) {( , ) , ( )}. (5)

A line through the origin is the set of points

 ν μ ν μ ν μ= ∈ ∈ r r r n n( , ) {( , ) ( )}; , ( ). (6)

We call L n( ) the set of all lines through the origin. As we explained, our finite geometry is not
a near-linear geometry. In near-linear geometries two lines have at most one point in common
[27–29], and this is not true in our case. Only for prime n,  n( ) is a field, and then G n( ) is a
near-linear geometry. Non-near-linear geometries have non-trivial subgeometries (in an
analogous way to non-prime numbers which have non-trivial factors). For m n| ,  m( ) is a
subgroup of  n( ), and G m( ) is a subgeometry of G n( ) (we denote this as ≺G m G n( ) ( )), in
the sense of the following results [23, 24] which we summarize in the following proposition
without proof.

Proposition 3.1.

(1) In G n( ) there are ψ n( ) lines through the origin, with exactly n points, which we call
maximal lines.

(2) If σ ∈ n*( ), then σν σμ ν μ= ( , ) ( , ). If  σ ∈ −n n( ) *( ) then
σν σμ ν μ⊂ ( , ) ( , ). In this case we say that σν σμ ( , ) is a subline of ν μ ( , ), and

we denote this as σν σμ ν μ≺ ( , ) ( , ). It follows that ν μ ( , ) is a maximal line in G n( )

if ν μ ∈ nGCD( , ) *( ), and a subline if  ν μ ∈ −n nGCD( , ) ( ) *( ).
(3) A line ν μ ( , ) in G n( ), is also the line

ν μ ν μ= = − k k rk rk r n( , ) {( , ) 0, 1,..., 1}, (7)

in the bigger geometryG kn( ). The line ν μ k k( , ) inG kn( ) is a subline of the maximal line

ν μ ν μ= ′ ′ ′ = − r r r kn( , ) {( , ) 0, 1,..., 1}. (8)

(4) Two maximal lines through the origin in G n( ), have m points in common, where m n| .
These m points form a subline κ λ ( , ), where κ λ ∈ m, ( )n

m
(the elements of this are

−0, ,...,n

m

n m

m

( 1) ). The subline κ λ ( , ) is also a maximal line in the subgeometry G m( ).
There are ψ m( ) maximal lines in G m( ) which are also sublines within the larger
geometry G n( ).
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We consider the matrices

κ λ μ ν κ λ
μ ν κ λ μ ν

κν λμ

≡ ∈

= − =
( )s n

s n

( , , ) ; , , , ( )

det( ) 1 (mod ). (9)

They form the Sp n(2, ( )) group. Acting κ λ μ νs ( , | , ) on all the points of a line ρ σ ( , ) we
get all the points of the line κρ λσ μρ νσ+ + ( , ), which we denote as κ λ μ ν ρ σs ( , | , ) ( , ).

In the case of prime n, acting with θ−s (0, 1| 1, ) on a fixed line  (0, 1), we get all +n 1
lines (through the origin). We label these lines as

θ Λ
θ Λ θ θ θ

= − → − =
= − → = − =


 n s

1 ( 1) (0, 1),
0,..., 1 ( ) (0, 1 1, ) (0, 1) (1, ). (10)

Here (and later) we use the convention that in the case θ = −1, the θ−s (0, 1| 1, ) is replaced
by 1. It can be checked that if we use general symplectic transformations, the

κ λ μ ν s ( , | , ) (0, 1) is simply one of the lines − s t(0, 1| 1, ) (0, 1).
We easily find the following practical rule: if ν μ ( , ) is a maximal line in G n( ), then it is

also the subline ν μ k k( , ) in the larger geometry G kn( ). The maximal line in G kn( ) which
has ν μ k k( , ) as a subline, is ρ σ ( , ) with

ρ ν
ν μ

σ μ
ν μ

= =
GCD( , )

;
GCD( , )

. (11)

3.1. Factorization of lines in terms of prime factor lines

Based on the Chinese remainder theorem, Good [34] introduced two bijective maps between
 n( ) and  × ⋯ ×p p( ) ( )N1 . The first map (which will be used for ‘positions’) is

∑↔ = =( )m m m m m mod p m m s( ,..., ); ; . (12)N i i i i1

The second map (which will be used for ‘momenta’) is

∑↔ = = =( )m m m m mt m t p m m r n( ,..., ); mod ; (mod ). (13)N i i i i i i i1

Here,

= = = ∈( )r
n

p
t r mod p s t r n; 1 ; ( ). (14)i

i
i i i i i i

Using this factorization, we define the following bijective map between  ×n n( ) ( ) and
   × ⋯ × × × ⋯ ×p p p p[ ( ) ( )] [ ( ) ( )]N N1 1

ρ σ ρ ρ σ σ↔ ( )( , ) ,..., , ,..., . (15)N N1 1

We use here the map of equation (12) for ρ (which is related to positions) and the map
equation (13) for σ (which is related to momenta). Then we can write an arbitrary line ρ σ ( , )
as

ρ σ ρ σ ρ σ= × ⋯ ×  ( ) ( )( , ) , , . (16)N N1 1

The ρ σ ( , )i i are ‘prime factor lines’ in the sense that they are in  ×p p( ) ( )i i , where pi is a
prime number.
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An example of this, which is needed below, is that

= × ⋯ ×  ( ) ( )t t(0, 1) 0, 0, . (17)N1

The factorization of lines in equation (16) is analogous to the factorization of integers. The
subline is a concept analogous to a divisor of an integer. The  (0, 0) (which contains only the
(0, 0) point) corresponds to the integer 1. If many lines have a subline in common, this is
analogous to many integers having a common divisor.

The set L n( ) of all lines through the origin in G n( ) is a partially ordered set with subline
as partial order. Its cardinality is


∑ ψ= ∈L n k( ) ( ). (18)

k n( )

In the following lemma we express equation (16) in the notation of equation (10). We
introduce this new notation in this paper because it is analogous to the notation in the WMUB
later, and it will show clearly the isomorphism between the partial order of the geometries and
the partial order of the quantum systems.

Lemma 3.2. The maximal lines in G n( ) are:

(1) if all ρ ≠ 0i



ρ σ ρ σ ρ σ

Λ θ Λ θ Λ θ θ

θ ρ σ ρ σ

= × ⋯ ×

= × ⋯ × =

= ∈

− −

−

  ( ) ( )
( ) ( ) ( )

p

( , ) 1, 1,

,...,

; , ( ). (19)

N N

N N

i i i i i i

1
1

1
1

1 1

1

(2) If ρ = 0j then the line σ Λ= = − (0, ) (0, 1) ( 1)j and in this case θ = −1j in the
above equation.

Proof. If ρ ≠ 0i then ρ σ ρ σ= − ( , ) (1, )i i i i
1 (the ρi belongs in the field  p( )i and

therefore the ρ −
i

1 exists). Therefore, equation (16) can be written as in equation (19). If one
(or more) ρ = 0j then corresponding factor line σ Λ= = − (0, ) (0, 1) ( 1)j . For example,
equation (17) is written as

Λ= − − (0, 1) ( 1,..., 1). (20)

□
Other examples are discussed later (table 1). Equation (19) uses two different notations

for the lines. The ρ σ ( , ) is the ‘natural notation’ and the Λ θ θ( ,..., )N1 is used later to
demonstrate the duality with the WMUB.

Given two maximal lines

ρ σ ρ σ Λ θ θ

ρ σ ρ σ Λ θ θ

× ⋯ × =

′ ′ × ⋯ × ′ ′ = ′ ′

 
 

( ) ( )
( ) ( )

( )
( )

, , ,...,

, , ,..., (21)

N N N

N N N

1 1 1

1 1 1

let I1 be a subset of the set of indices =I N{1,..., } such that θ θ= ′i i for ∈i I1 or equivalently

ρ ρ= ′ki i and σ σ= ′ki i with ∈k n*( ). Then the × ⋯ × r s r s( , ) ( , )N N1 1 with
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Table 1. The maximal lines in G (30) and its subgeometries, presented in both notations
according to equation (19). The first is the ‘natural notation’ for lines, and the second is
used to demonstrate the duality with the WMUB.

G (30) Λ= − − − (0, 1) ( 1, 1, 1), Λ= (1, 0) (0, 0, 0), Λ= (1, 1) (1, 1, 1),
Λ= (1, 2) (0, 2, 2), Λ= (1, 3) (1, 0, 3), Λ= (1, 4) (0, 1, 4),
Λ= (1, 5) (1, 2, 0), Λ= (1, 6) (0, 0, 1), Λ= (1, 7) (1, 1, 2),
Λ= (1, 8) (0, 2, 3), Λ= (1, 9) (1, 0, 4), Λ= (1, 10) (0, 1, 0),
Λ= (1, 11) (1, 2, 1), Λ= (1, 12) (0, 0, 2), Λ= (1, 13) (1, 1, 3),
Λ= (1, 14) (0, 2, 4), Λ= (1, 15) (1, 0, 0), Λ= (1, 16) (0, 1, 1),
Λ= (1, 17) (1, 2, 2), Λ= (1, 18) (0, 0, 3), Λ= (1, 19) (1, 1, 4),
Λ= (1, 20) (0, 2, 0), Λ= (1, 21) (1, 0, 1), Λ= (1, 22) (0, 1, 2),
Λ= (1, 23) (1, 2, 3), Λ= (1, 24) (0, 0, 4), Λ= (1, 25) (1, 1, 0),
Λ= (1, 26) (0, 2, 1), Λ= (1, 27) (1, 0, 2), Λ= (1, 28) (0, 1, 3),
Λ= (1, 29) (1, 2, 4), Λ= − (2, 1) ( 1, 2, 3), Λ= − (2, 3) ( 1, 0, 4),

Λ= − (2, 5) ( 1, 1, 0), Λ= − (2, 7) ( 1, 2, 1), Λ= − (2, 9) ( 1, 0, 2),
Λ= − (2, 11) ( 1, 1, 3), Λ= − (2, 13) ( 1, 2, 4), Λ= − (2, 15) ( 1, 0, 0),
Λ= − (2, 17) ( 1, 1, 1), Λ= − (2, 19) ( 1, 2, 2), Λ= − (2, 21) ( 1, 0, 3),
Λ= − (2, 23) ( 1, 1, 4), Λ= − (2, 25) ( 1, 2, 0), Λ= − (2, 27) ( 1, 0, 1),
Λ= − (2, 29) ( 1, 1, 2), Λ= − (3, 1) (1, 1, 2), Λ= − (3, 2) (0, 1, 4),

Λ= − (3, 4) (0, 1, 3), Λ= − (3, 5) (1, 1, 0), Λ= − (3, 7) (1, 1, 4),
Λ= − (3, 8) (0, 1, 1), Λ= − (3, 10) (0, 1, 0), Λ= − (3, 13) (1, 1, 1),
Λ= − (3, 16) (0, 1, 2), Λ= − (3, 19) (1, 1, 3), Λ= − (5, 1) (1, 2, 1),

Λ= − (5, 2) (0, 1, 1), Λ= − (5, 3) (1, 0, 1), Λ= − (5, 4) (0, 2, 1),
Λ= − (5, 6) (0, 0, 1), Λ= − (5, 11) (1, 1, 1), Λ= − − (6, 1) ( 1, 1, 1),
Λ= − − (6, 5) ( 1, 1, 0), Λ= − − (6, 7) ( 1, 1, 2), Λ= − − (6, 13) ( 1, 1, 3),
Λ= − − (6, 19) ( 1, 1, 4), Λ= − − (10, 1) ( 1, 1, 1), Λ= − − (10, 3) ( 1, 0, 1),
Λ= − − (10, 11) ( 1, 2, 1), Λ= − − (15, 1) (1, 1, 1), Λ= − − (15, 2) (0, 1, 1)

G (15) Λ= − − (0, 1) ( 1, 1), Λ= (1, 0) (0, 0), Λ= (1, 1) (2, 2),
Λ= (1, 2) (1, 4), Λ= (1, 3) (0, 1), Λ= (1, 4) (2, 3),
Λ= (1, 5) (1, 0), Λ= (1, 6) (0, 2), Λ= (1, 7) (2, 4),
Λ= (1, 8) (1, 1), Λ= (1, 9) (0, 3), Λ= (1, 10) (2, 0),
Λ= (1, 11) (1, 2), Λ= (1, 12) (0, 4), Λ= (1, 13) (2, 1),
Λ= (1, 14) (1, 3), Λ= − (3, 1) ( 1, 4), Λ= − (3, 2) ( 1, 3),

Λ= − (3, 4) ( 1, 1), Λ= − (3, 5) ( 1, 0), Λ= − (3, 8) ( 1, 2),
Λ= − (5, 1) (1, 1), Λ= − (5, 2) (2, 1), Λ= − (5, 3) (0, 1),

G (10) Λ= − − (0, 1) ( 1, 1), Λ= (1, 0) (0, 0), Λ= (1, 1) (1, 3),
Λ= (1, 2) (0, 1), Λ= (1, 3) (1, 4), Λ= (1, 4) (0, 2),
Λ= (1, 5) (1, 0), Λ= (1, 6) (0, 3), Λ= (1, 7) (1, 1),
Λ= (1, 8) (0, 4), Λ= (1, 9) (1, 2), Λ= − (2, 1) ( 1, 4),
Λ= − (2, 3) ( 1, 2), Λ= − (2, 5) ( 1, 0), Λ= − (2, 7) ( 1, 3),
Λ= − (2, 9) ( 1, 1), Λ= − (5, 1) (1, 1), Λ= − (5, 2) (0, 1),

G (6) Λ= − − (0, 1) ( 1, 1), Λ= (1, 0) (0, 0), Λ= (1, 1) (1, 2),
Λ= (1, 2) (0, 1), Λ= (1, 3) (1, 0), Λ= (1, 4) (0, 2),
Λ= (1, 5) (1, 1), Λ= − (2, 1) ( 1, 1), Λ= − (2, 3) ( 1, 0),
Λ= − (2, 5) ( 1, 2), Λ= − (3, 1) (1, 1), Λ= − (3, 2) (0, 1),

G (5) Λ= − (0, 1) ( 1), Λ= (1, 0) (0), Λ= (1, 1) (1),
Λ= (1, 2) (2), Λ= (1, 3) (3), Λ= (1, 4) (4),
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ρ σ= = ∈
= = ∈ = −

r s i I

r s i I I I

; ; if

0; if (22)
i i i i

i i

1

2 1

is a common subline of both of these lines. In other words, we find a common subline, by
keeping some of the common ‘factor lines’ and replacing the rest of them with  (0, 0). This
is analogous to finding a common divisor of two integers, by keeping some of the common
factors and replacing the rest of the factors with one.

3.2. Partial ordering of the finite geometries

With the help of the maps (12), (13), the Sp n(2, ( )) is factorized as
 × ⋯ ×Sp p Sp p(2, ( )) (2, ( ))N1 , where

κ λ μ ν κ λ μ ν= ⊗ ( )s s r( , , ) , , . (23)
i

i i i i i

The κ λ ν, ,i i i are related to κ λ ν, , as in equation (12), and μi is related to μ as in equation (13)
[23, 24]. Therefore

θ θ θ θ− = ⊗ − = ( )( )s s r t p(0, 1 1, ) 0, , ; mod . (24)
i

i i i i i

The set G n( ) of all subgeometries of G n( ) with the partial order ‘subgeometry’ is
isomorphic to the partially ordered set  n( ). The following proposition describes the
embedding of smaller geometries into larger geometries and their partial ordering.

Proposition 3.3.

(1) Let =I N{1,..., } be a set of indices, ⊆I I1 and = −I I I2 1. Also let n be given by
equation (2) and

∏ ∏= =
∈ ∈

m p
n

m
p; . (25)

i I
i

i I
i

1 2

If in equation (16), ρ σ = ( , ) (0, 0)i i for all ∈i I1, then ρ σ ( , ) is a subline in the
subgeometry G ( )n

m
(the subgeometry corresponding to the set of primes pi with ∈i I2 ).

(2) There are ψ m( ) maximal lines in G n( ) which have in common a subline with n

m
points.

Proof.

(1) We first point out that in the factorization of equations (12), (13), if ρ = 0i for all ∈i I1
then ρ ∈ m ( )n

m
. Conversely, if ρ ∈ m ( )n

m
, then ρ ρ= = 0i i . The fact that

ρ σ = ( , ) (0, 0)i i for all ∈i I1, implies precisely that ρ ρ= = 0i i , and therefore the
points of the line ρ σ ( , ) belong to  ×m m( ) ( )n

m

n

m
. In other words the ρ σ ( , ) is a

subline in the subgeometry G ( )n

m
.

Table 1. (Continued ).

G (3) Λ= − (0, 1) ( 1), Λ= (1, 0) (0), Λ= (1, 1) (1),
Λ= (1, 2) (2)

G (2) Λ= − (0, 1) ( 1), Λ= (1, 0) (0), Λ= (1, 1) (1)

G (1) Λ= (0, 0) (0) — —
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(2) We consider lines Λ θ θ( ,..., )N1 which have all θi with ∈i I2 in common, and which differ
in the θ j with ∈j I1. There are

∏ ψ+ =
∈

( )p m1 ( ) (26)
i I

i

1

such lines. As explained earlier, in order to find their common subline we replace the
ρ σ ( , )i i for ∈i I1, with  (0, 0). Therefore the common subline has

∏ =
∈

p
n

m
(27)

i I
i

2

points. □

3.3. Examples

In figure 1 we present the Hasse diagram showing the subgeometries of G (30). This is
isomorphic to the Hasse diagram for the divisors (30), with divisibility as partial order.

In table 1 we present the ψ =(30) 72 maximal lines in the geometry G (30). We use both
notations described in equation (19). We also present the ψ =(15) 24 maximal lines in the
geometry G (15), the ψ =(10) 18 maximal lines in the geometry G (10), the ψ =(6) 12
maximal lines in the geometry G (6), the ψ =(5) 6 maximal lines in the geometry G (5), the
ψ =(3) 4 maximal lines in the geometry G (3), and the ψ =(2) 3 maximal lines in the
geometryG (2). The maximal lines in a subgeometry are also sublines in ‘supergeometry’. For
example, the maximal lines in G (5) are also sublines in G G G(10), (15), (30).

As examples, we consider in G (30) the ≺ ≺  (15, 15) (5, 5) (1, 1). The subline

= (15, 15) {(0, 0), (15, 15)} (28)

in G (30) is the maximal line

= (1, 1) {(0, 0), (1, 1)} (29)

Figure 1. The Hasse diagram showing the geometry G (30) and its subgeometries, and
also the Hilbert spaces of the subsystems of Σ (30).
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in G (2). The subline

= (5, 5) {(0, 0), (5, 5), (10, 10), (15, 15), (20, 20), (25, 25)} (30)

in G (30) is the maximal line

= (1, 1) {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)} (31)

in G (6).

4. Partial ordering of the set of quantum systems with variables in Z nð Þ

We consider a quantum system with positions and momenta in  n( ), which we denote as
Σ n( ). If m is a divisor of n,  m( ) is a subgroup of  n( ). In this case, we say that Σ m( ) is a
subsystem of Σ n( ).

Let α〉X| ;n and α〉P| ;n be position and momentum states, respectively. Here the X P,n n are
not variables but they simply indicate that they are position and momentum states, respec-
tively, in the n-dimensional Hilbert space of this system H n( ). The Fourier transform is given
by



∑ω αβ α β

ω α πα α

=

= ∈

α β

−

⎜ ⎟⎛
⎝

⎞
⎠

F n X X

n
n

( ) ; ; ,

( ) exp i
2

; ( ). (32)

n n
1 2

,

Then

α α=P F X; ; . (33)n n

References [25, 26] used equations (12), (13) to factorize a system with variables in  n( ),
where n is given in equation (2), in terms of N subsystems with variables in  p( )i . There is a
bijective map between H n( ) and the tensor product ⊗H p( )i , where

α α α↔ ⊗ ⊗X X X; ; ... ; . (34)n N N1 1

For simplicity we use here the notation α 〉X| ;i i instead of α 〉X| ;p ii
. Also

α α α↔ ⊗ ⊗P P P; ; ... ; . (35)n N N1 1

For m a divisor of n, the Σ m( ) is a subsystem of Σ n( ). This means that the variables of
Σ m( ) take values in a subgroup of the group of the variables of Σ n( ). The quantum states of
Σ m( ) are embedded into Σ n( ), as follows:

∑ ∑α α→
α

α
α

α
=

−

=

−

s X s X
n

m
; ; . (36)

m

m

m

n

0

1

0

1

This is analogous to equation (4).
Therefore, there is a partial order ‘subsystem’ in the setS n( ) of all subsystems of Σ n( )

(i.e. the set of all systems Σ m( ) with m n| ). There is also a partial order ‘subspace’ in the set
H n( ) of their Hilbert spaces (i.e., the set of all H m( ) with m n| ). This is shown in figure 1, and
enhances the concept of duality between geometries and quantum systems.
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4.1. MUB

There are well known differences in the formalism of finite quantum systems for the cases of
even and odd dimension (e.g., [37–39]), and in this part of the paper we consider systems
with odd dimension.

We consider the displacement operators





∑

∑

γ δ ω γδ ω αγ α α

ω αδ α α

ω γδ

= − =

= −

= − = =

γ δ γ

α

δ

α
δ γ γ δ

−

∈

∈

( )D Z X Z X X

X P P

X Z Z X X Z 1

( , ) 2 ; ( ) ; ; ;

( ) ; ; ,

( ); . (37)

n

n n

n

n n

n n

1

( )

( )

γ δ ω ϵD ( , ) ( ), where γ δ ϵ ∈ n, , ( ), form a representation of the Heisenberg–Weyl group.
We note that =F X F Z† and = −F Z F X† 1.

Symplectic transformations in the present context have been studied in [35, 36]. They
obey the relations



κ λ μ ν κ λ μ ν λ κ
κ λ μ ν κ λ μ ν ν μ

κν λμ κ λ μ ν

=
=

− = ∈

S X S D

S Z S D
n

( , , ) [ ( , , )] ( , )

( , , ) [ ( , , )] ( , )
1; , , , ( ). (38)

†

†

The κ λ μ νs ( , | , ) used earlier and the κ λ μ νS ( , | , ) used here, belong to different
representations of the Sp n(2, ( )) group. A special case is − =S F(0, 1| 1, 0) .

MUB in systems with prime dimension p, are given by

θ α α

θ α θ α

= − → =

= − → = −

θ

θ

X

X

X

p S X

1 ; ;

0,..., 1 ; (0, 1 1, ) ; . (39)

p

p

In the special case θ = 0, we get α α〉 = 〉X P| ; | ;p0 .
There are +p 1 such bases labelled with θ = − −p1,..., 1. They obey the relation

α β∣〈 ∣ 〉∣ =θ ϕX X
p

; ;
1

. (40)2

We label these bases, in an analogous way to the lines, as

θ α θ α= = − − ∈θX( ) { }B p p; ; 1,..., 1 ( ). (41)

4.2. Duality between WMUB in H nð Þ and lines in G nð Þ

We next introduce the concept of WMUB studied in [23, 24]. They are products of MUB in
each of the Hilbert spaces H p( )i :

α α α α= ⊗ ⊗θ θ θ θX X X; ,..., ; ... ; , (42)N N N,..., 1 1 1N N1 1

where α ∈ p( )i i and θ = − −p1,..., 1i i . In the special case θ θ= = = −... 1N1 we get

α α α α

α α

= ⊗ ⊗

= ⊗ ⊗
− − − −X X X

X X

; ,..., ; ... ;

; ... ; . (43)

N N N

N N

1,..., 1 1 1, 1 1 , 1

1 1
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In the special case θ θ= = =... 0N1 we get

α α α α α α= ⊗ ⊗ = ⊗ ⊗X X X P P; ,..., ; ... ; ; ... ; . (44)N N N N N0,..., 0 1 10 1 0 1 1

Here

α α β β∣〈 ∣ 〉∣ =θ θ ϕ ϕX X
k

; ,..., ; ,...,
1

, (45)N N,..., 1 ,..., 1
2

N N1 1

where k is a divisor of n. In this way we get ψ = ∏ +n p( ) ( 1)i WMUB, which we label in
an analogous way to the lines, as

θ θ α α= θ θX{ }( )B ,..., ; ,..., . (46)N N1 ,..., 1N1

Proposition 4.1. There is a duality between the lines in equation (19) and the WMUB:

Λ θ θ θ θ↔( ) ( )B,..., ,..., . (47)N N1 1

Proof. Lemma 3.2 for the factorized lines, makes the duality self-evident. □
In this duality:

(1) Maximal lines in G n( ) correspond to WMUB in H n( ). There are ψ n( ) maximal lines in
G n( ) and ψ n( ) WMUB in H n( ). Each maximal line has n points and each WMUB has n
vectors.

(2) The subgeometries of G n( ) correspond to the subsystems of Σ n( ), and also to the
divisors of n. There are σ n( )0 (the divisor function) divisors of n, and therefore σ n( )0

subgeometries of G n( ) and σ n( )0 subsystems of Σ n( ).

This is summarized in table 2.

5. Discussion

We have studied as a partially ordered set, the set G n( ) of subgeometries of G n( ), related to
the quantum system Σ n( ). These geometries are not near-linear geometries and consequently
they have subgeometries, and there is a partial order which we have studied in this paper. This
is analogous to non-prime numbers, which have non-trivial divisors. The lines through the
origin have been factorized in terms of ‘prime factor lines’ in  ×p p( ) ( )i i . We have
explained, that this factorization of lines is analogous to the factorization of integers in terms
of prime factors. We labelled the lines in two different ways in equation (19). The first is a
natural notation for lines, and the second is used to demonstrate the duality with the WMUB.

Table 2. Duality between lines and WMUB.

G n( ) H n( )

Λ θ θ( ,..., )N1 (equation (19)) θ θB ( ,..., )N1 (equation (46))

ψ n( ) maximal lines ψ n( ) WMUB
n points in each maximal line n orthogonal vectors in each WMUB
Subgeometries G m( ) (m n| ) Subsystems Σ m( ) (m n| ) with Hilbert space H m( )
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We have also studied the setS n( ) of subsystems of Σ n( ) as a partially ordered set, and
we have shown that it is isomorphic toG n( ). WMUB which are products of the MUB in the
‘prime factor Hilbert spaces’ H p( )i , have also been discussed.

There is an intimate link between geometry (lines) and physics (quantum systems) which
is formalized in this paper. The work also demonstrates the relationship between smaller and
bigger structures, in both geometry and physics.
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