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SUMMARY

Geometric modeling builds computer models for industrial design and manufacture from
basic units, called patches. Many patches, including Bezier curves and surfaces, are pieces
of toric varieties, which are objects from algebraic geometry. Statistical models are families
of probability distributions used in statistical inference to study the distribution of observed
data. Many statistical models, including the log-linear or discrete exponential models used to
analyze discrete data, are also pieces of toric varieties. While these connections of geometric
modeling and algebraic statistics to algebraic geometry were known, direct connections be-
tween these applied subjects were only recently discovered by the Pls [arXiv:/0706.2116]. For
example, iterative proportional fitting (IPF) from statistics can be used to compute patches,
and linear precision in geometric modeling is related to maximum likelihood estimation in
statistics.

Not only are these basic objects the same, but an important tool, the algebraic moment
map of a toric variety, is also shared. In geometric modeling it offers a prefered parametriza-
tion of a patch, and in algebraic statistics it is the expectation map of a log-linear model.
These same objects arise in dynamical systems; in [arXiv:0708.3431] the authors introduce
toric dynamical systems whose space of systems is a toric variety with the algebraic moment
map giving the steady state solution.

We will exploit these connections to transfer ideas and techniques between these three
fields. Krasauskas’s multi-sided toric patches [Adv. Comput. Math. 17 (2002)] generalize
the classical Bezier patches. Several important problems, including the tuning of a toric
patch to achieve linear precision, are amenable to techniques from algebraic statistics. We
will also develop IPF into a tool to compute and manipulate toric patches.

While these fields use objects from algebraic geometry, the application of methods from
algebraic geometry to these fields is in its infancy. We will deepen these applications. For
example, there is a dictionary between toric degenerations and control polyhedra of patches
that we will elucidate and use. Another direction is to find applications in modeling and
statistics of theoretical work of Sottile on bounds (both lower and upper) on numbers of
real solutions to equations. We forsee many avenues of research, including several which are
suitable for drawing undergraduates into research and others which could form the foundation
for a Masters or PhD thesis.

Student Involvement

This project will link students at SHSU with the rest of Sottile’s group at TAMU. We
plan both individual supervised research projects for students and vertically integrated re-
search projects between undergraduates, graduate students, postdocs and faculty at both
institutions. This will train junior members of our group in the art of collaborative scientific
research, in the relevant mathematics, and in the use of computers in mathematical research.

It will provide SHSU students, many of whom are the first in their families to attend college
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or come from underrepresented groups, with the opportunity of being involved in research
at a major research university. Senior members will get experience in mentoring.

This project will fund our joint research, two undergraduate students and a Masters stu-
dent at SHSU and a PhD student and postdoc at TAMU.

A. RESEARCH OBJECTIVES

Recent work in geometric modeling [4], dynamical systems [2], and algebraic statistics
[9] has revealed a mathematical object common to these fields—the positive part of a toric
variety and its algebraic moment map, u. In geometric modeling, the inverse of p is a pre-
ferred parametrization of a toric patch, in algebraic statistics it is the maximum likelihood
estimate of a log-linear model, and for toric dynamical systems it is the corresponding steady
state. We will exploit this connection to transfer ideas and techniques between these fields.
This project will involve collaboration between teams of students and researchers at Sam
Houston State University and at Texas A&M University. Our team-based, experimental
approach represents a new methodology for mathematical research. The outcomes will in-
clude the training of junior researchers, published results, and the submission of proposals
for federally-funded research.

The problems we propose below are designed to advance our understanding of these fields
across a broad front. They will deepen the mathematical foundations of these areas, as well
as further the development of tools and introduce new objects which may eventually prove
useful in actual applications. Some will also impact pure mathematics as the specific needs
of applications often highlight new mathematical structures to investigate.

1. The algebraic moment map. An integer vector a = (aq,...,qq) corresponds to a
monomial
x® = aftag? - xy?

for z; # 0. (Typically, z; € C*(:= C — {0}), but we may have z; > 0 so that z; € R..)

Lists ¢ = (cg, c1, - . ., ¢,) € R of positive numbers (called a weight) and A = {ag, ay,...,a,}
of integer vectors together define a map . 4: (C*)¢ — P" (n-dimensional projective space)
via

ap al

sy CpE]

(1) Pe,a(x) = [coz®™, ez

The closure of the image . 4((C*)?) is the toric variety ¢X 4. The closure of . 4(R%)
is the positive part cX} of ¢X 4, which consists of those points of ¢X 4 with nonnegative
coordinates.

The algebraic moment map [10] py: cX 4 — C? (or pq: P — C?) is defined by

Zn—gaiyi
XAy =1[Yo, Y1, - Yn) — paly) = Z5— .
[ ] Zi:oyi

The image of ¢X 7 is Ay, the convex hull of the vectors a; € A. The following result is
fundamental.
Theorem. The algebraic moment map 4 is a homeomorphism between X and A 4.
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2. Algebraic Statistics. In algebraic statistics, the positive part A, of P" is identified
with the probability simplex {(po,...,pn) | p; > 0 and po+ - -+ p, = 1}. Algebraic subsets
X of A, are statistical models. These usually come with a parametrization from a set of
meaningful parameters to the family of probability distributions X. A fundamental problem
is statistical inference:

Given a point ¢ € A,, and a model X, find the point p € X which ‘best’ agrees with ¢.

Typically, ‘best’ means the point corresponding to the maximum likelihood estimate (MLE)
for q. Toric models have the form cX;{. For these, the MLE for ¢ € A,, is the point p € ¢X 4
such that

pa(p) = palg)  andhence  p = p3'(na(q)).
Iterative proportional fitting (IPF) [3] is a numerical algorithm to compute ;" and thus the
MLE.

Geometrically, ,u;‘l(x) is the intersection of a linear subspace E4, of P" with cX;{.
Catanese, et. al. [1] defined the mazimum likelihood degree of the model ¢X}. This is the
number of intersection points of ¢X 4 and E 4, (outside of a base locus, for general x). Mod-
els with maximum likelihood degree 1 are those for which the MLE p is a rational function
of the data g. IPF reaches the desired values after one single iteration of the algorithm for
such models.

Problem 1. How does the convergence of IPF depend upon the mazimum likelihood degree?
Problem 2. Classify toric models with maximum likelihood degree 1.

The restriction that A C Z¢ is unnatural for statistics; any set A C R? of vectors gives
a map ¢. 4 (1) defined on RY whose image cX} is a log-linear model. While maximum
likelihood degree is not defined for ¢ X}, we will investigate the following extension of problem
1 to irrational A.

Problem 3. Determine how the convergence of IPF depends upon A and the weight c.

3. Geometric modeling. Geometric modeling builds computer models for industrial de-
sign and manufacture from basic units, called patches. While the classical Bézier patches are
widely used, special applications require more flexible multi-sided patches. Krasauskas [§]
generalized Bézier patches to multi-sided toric patches to fill this niche. Mathematically, a
toric patch is the composition of a parametrization A4 — CXX with a linear projection
given by control points (Figure 1). The parametrization determines the internal structure
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F1GURE 1. Toric patches and their control polytopes

of the patch and the control points determine its shape. While toric patches share many
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properties with Bézier patches, it is not known which possess linear precision, which is the
ability of a patch to replicate affine functions. The Pls showed [4] that every toric patch has
a unique reparameterization with linear precision, namely /L;‘l. In particular IPF provides
an algorithm to compute toric patches with linear precision.

Problem 4. Develop IPF as a tool to compute toric patches. Compare its complexity and
numerical stability to other (e.g. subdivision) methods [6].

Integral exponents A allow parameterizations A4 — c¢X | by rational functions. Using
IPF to compute parameterizations removes this restriction, allowing irrational exponents,
ACRY
Problem 5. Develop the theory and properties of irrational patches, those with A C R,

An important open question is when ¢X 4 has rational linear precision (i.e. ,u;‘l is rational).
Problem 6. Classify toric patches cX 4 with rational linear precision.

This is almost equivalent to Problem 2 (simplifications we made mask the distinction).
While maximum likelihood degree 1 and rational linear precision do differ (we have exam-
ples), they do so in a subtle way that we do not yet fully understand. Examples show that
it is sometimes possible to ‘tune’ (alter 1 4) a patch ¢X 4 so that ,u;‘l is a rational function.
Problem 7. [nvestigate when a patch cX 4 may be tuned to achieve rational linear precision.

Relatively little of the structure of toric varieties has been exploited in geometric modeling.
We plan to change this. For example, every toric variety enjoys a degeneration to a polyhedral
complex. Under the map corresponding to control points, this complex becomes the control
polygon/polytope of the patch (which is manipulated to change the shape of the patch), and
the degeneration corresponds to changing weights on the control points.

Problem 8. Develop and exploit this dictionary between toric degenerations and control
polytopes.

4. Approximation theory and beyond. More generally, a patch 3 = {, | a € A} is a
collection of nonnegative functions with domain A 4. When A consists of the vertices of A 4,
the patch has linear precision precisely when [ forms a set of barycentric coordinates for A 4.
Thus patches with linear precision are a general form of barycentric coordinates. We believe
that, like barycentric coordinates, these more general toric patches may have a role to play
in high (> 2) dimensional modeling or as special finite elements in numerical schemes.
Problem 9. Study the feasibility of these new applications of toric patches.

When the functions in a patch § are rational (as in toric patches), they define a map
B: C?Y — P" whose image Xz is an algebraic variety. By the geometric analysis of [4],
this has rational linear precision when X3 has a remarkably singular intersection (called
a base locus) with a canonical linear subspace of P". Exploiting this unusual geometry is
one approach to Problems 2, 6, and 7. Wachspress and then Warren [11] defined rational
barycentric coordinates for arbitrary polytopes. Examples show that their base loci have
interesting properties.

Problem 10. Study the base loci of Wachspress coordinates.

While we do not propose any problems involving toric dynamical systems, we remark that
Sottile and Craciun have applied a result from dynamical systems to develop a criterion on
control points which guarantees a patch has no self-intersections. This line of research is in
its infancy.



B. METHODOLOGY

Some problems we propose are amenable to immediate successful completion as the way
forward is clear—they are designed to help train the junior members of our group in these
topics and in the art of mathematical research. Learning the common background of toric
varieties will give the students a foundation for their future studies as toric varieties are
fundamental in computational algebraic geometry and ubiquitous in the applications of al-
gebraic geometry. Several problems are ideal for direct investigation by undergraduates.
While different problems are suitable for different members of our team, we will create a
vertically integrated collaborative research environment that involves several members on
most projects. Our emphasis on vertically integrated collaboration, computation, and ex-
perimentation is uncommon in mathematics, but we believe it forms an effective paradigm
for research and training in mathematics.

Once we develop IPF as a tool for geometric modeling (Problem 4) it is clear how to
proceed on Problem 5, as our preliminary investigations have been fruitful and they point
the way forward. We will simply need to write a paper and solve the problems which will
arise in that venture. Another straightforward project should be Problem 8, as Sottile has
used the technique of toric degenerations several times in his pure-mathematical research.

In contrast, Problem 9 is much more open-ended and it will require us to learn more
about approximation theory. The workshop on algebraic geometry and approximation theory
that Garcia-Puente is organizing this April should be useful in this regard. Both PIs have
colleagues who are experts in this area and we plan to make use of their expertise.

Problems 6 and 2 are perhaps the hardest. For example, the partial results [7] on Problem
6 when d = 2 used the classification of birational maps of the plane P2. Very little is known
in general about birational maps of P when d > 3, so treating this case, which is important
for high-dimensional modeling, may require us to develop some additional theory about such
birational maps.

While these problems require more advanced knowledge, the remaining problems do not
and have a completely different flavor. For example, Problem 4 will begin with our developing
software tools for using IPF to manipulate patches, and will proceed via a mixture of theory
and experimentation to help us understand how this method to compute patches compares
to other methods.

Problems 1 and 3 are similar; they involve the dependence of a numerical algorithm (IPF)
on the geometrical properties of a statistical model (maximum likelihood degree, or ¢ and
A). These projects start with numerical experimentation that should reveal the nature of
the dependence of one upon the other, and thus the theorems we will prove.

The last two Problems (7 and 10) will start with an exhaustive study of elementary exam-
ples. This approach is particularly well-suited for directed investigation by undergraduates.
For Problem 7, understanding how many simple patches may be tuned should lead to a
general theory for tuning all patches which we will develop. For Problem 10, the base loci of
Wachspress coordinates should depend upon the polytope in an interesting manner. Again,
this will be best understood by looking at many examples, which can be generated by the
undergraduate members of our team.

C. RESEARCH PERSONNEL

Frank Sottile, a professor of mathematics at Texas A&M, is known internationally for
his work on the applications of algebraic geometry, as well as combinatorics, real algebraic
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geometry, and Schubert calculus. Computation and computer experiments are central to
his work. His research has been continuously funded by the National Science Foundation
since 2000, including a CAREER award (2002-2007), and he was a Clay Mathematical
Institute Senior Researcher and a Kavli Fellow of the US National Academy of Sciences.
Since receiving his PhD in 1994, he has had over 60 research publications, held visiting
positions at institutions in North America and Europe, organized about two dozen scientific
conferences, given 20 plenary talks and over 150 invited presentations. Sottile is known for
his collaborations and mentoring with 60 coauthors, half of whom were postdocs or students.
He has supervised 8 postdocs and 5 graduate students.

Luis Garcia-Puente is an assistant professor of mathematics at Sam Houston State Uni-
versity and works on computational algebraic geometry and its applications, including com-
putational statistics, computational biology, systems biology, phylogenetics, and geometric
modeling. He wrote a foundational paper in algebraic statistics [5], was a postdoc at the
Mathematical Sciences Research Institute and Texas A&M, and has given invited talks at
scientific meetings in the US, Mexico, Germany, and Spain. He has has served as a research
mentor for undergraduate research programs in Puerto Rico (2001) and in Texas A&M (2005,
2006), directing five research projects. He is a co-organizer of an international workshop on
algebraic geometry and approximation theory at Towson University in April 2008.

D. STUDENT INVOLVEMENT

A main goal of this proposal is the training of students, from undergraduates through
postdocs. We will assemble a research team consisting of three undergraduate students,
and one each of a Masters, PhD, and postdoctoral student. Garcia-Puente will recruit the
undergraduates and Masters student from the student body at SHSU, over half of whom are
the first in their family to attend college and many of whom come from groups underrepre-
sented in Science. Sottile will either attract one of his current graduate students to work on
this research or recruit a new student from among the 80 PhD students in mathematics at
TAMU. Likewise, either a current or new postdoc working with him will join our team. His
department hires 6-8 postdocs each year.

The undergraduate members of our team will work full-time in the summers on research
projects and part-time during the school year. While this pattern of term-time work is
unusual for mathematics students involved in research, it is common in other sciences at
research universities and we feel necessary to keep them engaged in our project. It will also
relieve them of the necessity of taking less engaging work (eg. stacking library books or
flipping burgers.)

In addition to the regular direct supervision provided by the PlIs, we will hold monthly
group meetings, alternating between our institutions which are 56 miles apart. This will
expose students from both institutions to each other, not only providing students from SHSU
with an experience of the research culture at Texas A&M, but also giving team members
from TAMU insight into the culture at SHSU, thereby broadening the education of all.

The different problems we propose to study are designed to appeal to different members
of our team. In particular Problems 7 and 10 will enable undergraduate students to begin
working on relevant and useful research questions, while numbers 1, 3, 4, and 8 provide a
route into this subject for more advanced students. We intend to work collaboratively among
ourselves, and each of the problems we identified could lead to joint publications.



E. INSTITUTIONAL COMMITMENT AND SOURCES OF ADDITIONAL SUPPORT

Texas A&M supports research in the areas covered by this proposal. The Departments
of Mathematics, Statistics and Computer Science have major investments in personnel and
facilities in areas such as algebraic geometry, computational statistics, geometric modeling,
and approximation theory, all of which would benefit from our research, as well as help us
in the investigations. Garcia-Puente also has colleagues with expertise in approximation
theory. In addition, his department will provide basic institutional support for the students
involved, and will fund a third undergraduate student, as well as provide some travel support.

We expect to leverage our ARP funds with Federal agencies. Garcia-Puente plans to
submit a National Security Agency Young Investigators Grant proposal next year and a
National Science Foundation RUI (Research in Undergraduate Institutions) grant under the
program in Algebra of the Division of Mathematical Sciences the year after. While Sottile
will use some resources from his current NSF grant to support this project, he also plans
to apply next year for additional NSF funding to develop numerical software for use in the
theory and applications of real algebraic geometry. Part of that proposal will build upon our
investigations into the uses of IPF.

F. BUDGET JUSTIFICATION

The yearly stipend for a PhD student at TAMU is $1,850/month, for 11 months. We plan
to provide 3 months of summer support at $5,000/month to a postdoc at TAMU during
this grant. The stipend for a Masters student at SHSU is $12,000 per academic year and
$4,000 during the Summer. The stipend for an undergraduate student at SHSU is $2,500
per academic year and $3,500 during the Summer.

The computational and experimental nature of this research requires that each member
be equipped with a portable laptop. With accessories, we expect this to cost no more than
$1,500 per machine for 7 machines. The software we need is either free, or can be obtained
for a nominal fee using University licenses. We will use PI discretionary funds for software.

We will budget almost $2,000 per member for travel per year. The SHSU students and
Garcia-Puente will attend the yearly SACNAS (Society for Advancement of Chicanos and
Native Americans in Science) and the AMS/MAA Joint Mathematics Meetings. These are
important forums for presenting undergraduate research, and for experiencing the culture of
US Science. This will also help Garcia-Puente and the TAMU members attend one or more
research conferences in this subject each year. For example, there is a special year at SAMSI
(Statistical and Applied Mathematical Sciences Institute) in 2008-9 on algebraic methods
in systems biology and statistics and at least yearly conferences in Europe on interactions
between algebraic geometry and geometric modeling (Europe is the center of activity on the
interactions of algebraic geometry and geometric modeling).
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