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Abstract. We establish upper and lower bounds
on the number of connected components of lines
tangent to four triangles inR3. We show that four
triangles inR3 may admit at least 88 tangent lines,
and at most 216 isolated tangent lines, or an in-
finity (this may happen if the lines supporting the
sides of the triangles are not in general position).
In the latter case, the tangent lines may form up to
216 connected components, at most 54 of which
can be infinite. The bounds are likely to be too
large, but we can strengthen them with additional
hypotheses: for instance, if no four lines support-
ing each an edge of a different triangle cannot lie
on a common ruled quadric, then the number of
tangents is always finite and at most 162; if the
four triangles are disjoint, then this number is at
most 210; and if both conditions are true, then the
number of tangents is at most 156 (the lower bound
88 still applies).

1 Introduction

In this paper, we are interested in lines tangents to four trian-
gles. Our interest in lines tangent to triangles, and generally
to polytopes inR3, is motivated by visibility problems. In
computer graphics and robotics, scenes are often represented
as unions of not necessarily disjoint polygonal or polyhedral
objects. The objects that can be seen in a particular direction
from a moving viewpoint may change when the line of sight
becomes tangent to one or more objects in the scene. Since
the line of sight then becomes tangent to a subset of the edges
of the polygons and polyhedra representing the scene, ques-
tions about lines tangent to four polygons arise very naturally
in this context.
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Our results. By a triangle inR3, we understand the con-
vex hull of three distinct points inR3. Hence, we are not
discussing degenerate triangles which reduce to a segment
or to a point. Given four trianglest1, t2, t3, andt4 in R3,
denote byn(t1, t2, t3, t4) the number of lines tangent to all
four triangles.1 Note that this number can be infinite if, for
example, four sides of the segments are supported by four
lines that lie on a hyperbolic paraboloid. Let us denote by
T4 the set of all quadruplets of triangles(t1, t2, t3, t4) with
the property that for any of the34 = 81 quadruplets of lines
(`1, `2, `3, `4) such that̀ i supports an edge ofti, the four
lines do not belong to a common ruled surface (hyperboloid),
and no two of these lines are coplanar. In particular, for
every (t1, t2, t3, t4) ∈ T4, there are at most two lines tan-
gent to the lines supporting any quadruplet of edges, hence
n(t1, t2, t3, t4) is finite and at most162.

In this paper, we are primarily interested in the number

ntriangles
4 = max

(t1,t2,t3,t4)∈T4

n(t1, t2, t3, t4)

Our main results are two-fold. First, we show that

Theorem 1 We haventriangles
4 > 88. More precisely, there

is a configuration of fourdisjointtriangles inR3 which admit
finitely many, but at least 88, distinct tangent lines.

Next, we improve the upper bound onn4 slightly, in the
disjoint case.

Theorem 2 We haventriangles
4 6 162. More precisely, if

four triangles are inT 4, they admit at most162 distinct tan-
gent lines. This number is at most156 if the triangles are
disjoint.

Unfortunately, we cannot claim that if the number of tan-
gent lines is finite, then it is at most 162, because the number
may be finite although the four triangles do not belong to
T 4. When the four triangles are not inT 4, the number of
lines tangent to all four triangles can be infinite, and even
when it is finite it could be more than 162. In this case, we
may group these tangents by connected components: two
line tangents are in the same component if one may move

1As a side note, observe that a line tangent to four triangles cannot prop-
erly cross the interior of these triangles, and so it corresponds to an unoc-
cluded line of sight. If it is contained in the plane of any of these trian-
gles, it may intersect the interior but it is not considered a proper crossing.
Indeed, the line is still tangent to the triangle considered as a degenerate
three-dimensional polytope.
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continuously between the two lines while staying tangent to
the four triangles. Letn′(t1, t2, t3, t4) denote the number of
connected componentsof tangent lines to four triangle, and
let

n′
4
triangles = max

any (t1,t2,t3,t4)
n′(t1, t2, t3, t4)

Each quadruplet of edges may induce up to four components
of tangent lines, bringing the upper bound to324. We can
give a better bound on the numbern′

4 of connected compo-
nents of lines tangent to four triangles in any position. We
only state the following theorem (the proof will appear in the
complete version).

Theorem 3 We haven′
4
triangles 6 216 (and210 if the trian-

gles are disjoint). Moreover, the number ofinfinite compo-
nents is bounded above by54.

2 Proof of Theorem 1

For the lower bound, we construct four disjoint triangles in
such a way that they admit at least 88 tangents. At the heart
of our construction is a perturbation scheme from a con-
figuration of linesl1, l2, l3 and l4 which have exactly two
transversal linesx andy. We will perturb eachli into copla-
nar lines,l′i andl′′i , in order to multiplyx andy into two sets
of tangent lines. By choosing the perturbation carefully, we
argue that those tangent lines will be tangent to the triangles
ti defined by the three linesli, l′i, andl′′i .

One way to obtain such a configuration is by takingl1,
l2, l3 on a hyperbolic paraboloid. This paraboloid admits
two families of ruling lines, and we takel1, l2, l3 in one of
the two families. Next we choose a vertical planeπ4 inter-
secting the paraboloid in a conicC (actually, a parabola; see
Figure 1) and a line inπ4 that cutsC in two point, x4 and
y4. The lines that belong to the second family of lines ruling
the paraboloid passing through these two points are denoted
x andy, and satisfy the conditions stated above. In order to
avoid any kind of degenerate configurations, we may take all
four lines algebraically independent.

For our construction, a bit of notation helps. Given three
skew linesa, b, c, we denote byL(a, b, c) the set of their
line transversals, and byQ(a, b, c) the quadric ruled by these
lines. In particular we will denote byQj the quadric pass-
ing through the linesli (i ∈ {1, 2, 3, 4}, i 6= j). We denote
by πi a (not necessarily vertical) plane passing throughli
(i = 1, 2, 3, 4). Note that each planeπi intersects the cor-
responding quadricQi in a non-degenerate conicCi, and in
this plane the lineli intersectsCi in two points,xi = x ∩ πi

andyi = y ∩ πi. We can always pickπi such thatCi is a
parabola, or in case of a hyperbola, such thatli intersects the
same branch twice. This will be important in the construc-
tion below and is referred to as thelocal convexityof Ci in
the neighborhood ofx andy.

Construction of t4. The situation inπ4 is depicted in Fig-
ure 2(left). The first step of our construction is to pick a point

Hyperbolic paraboloid, with l1, l2, l3, (in blue), l4 (navy),
and the two transversals x and y (in red)

Figure 1: The initial configurationl1, l2, l3 andl4 with the
hyperbolic paraboloidQ4.

onl4 outside the conicC4 (on the side ofx4) and rotatel4 into
a linel′4 by a very small angleε4. This introduces two points
x′4 andy′4. Then we pick a linel′′4 which intersectsC4 in two
points in the very small arc fromy4 to y′4. Note that this line
is almost tangent toC4. The linesl4, l′4 andl′′4 thus intersects
C4 into six points, which are as close as we want tox4 and
y4. The local convexity ofC4 aroundy ensures that those
points actually lie on the trianglet4 bounded byl4, l′4 and
l′′4 .2 These six points corresponds to six lines tangent tol1,
l2, l3 and the trianglet4, which are as close as we want tox
andy. (See Figure 2(right).)
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Figure 2: (left) Inπ4, the linel4 cutsC4 in two points,x4 and
y4. (right) From 2 intersections to 6.

Construction of t3. The second step takes place inπ3.
The quadricQ(l1, l2, l′4) cutsπ4 in a conicC ′

3 very close to
C3, whileQ(l1, l2, l′′4 ) cutsπ4 in a conicC ′′

3 (not necessarily
close toC3). Note thatC′3 intersectsl3 in two pointsx′3 andy′3
very close tox3 andy3, while C′′3 intersectsl3 in two points
betweeny3 andy′3. Thus either (i)C ′′

3 is almost tangent tol3,
or (i) it is hyperbola whose two branches are almost parallel
in the neighborhood ofy3. (See Figure 3(left)).

In any case, we pick a point onl3 outside the segment
(x3, y3) (this time on the side ofy3) and rotatel3 into a line
l′3 by a small angleε3. Thusl′3 intersectsC3 in two points
close tox3 andy3 andC′3 in two points close tox′3 andy′3.

2Local convexity is crucial here: IfC4 had been concave in a neighbor-
hood ofy, as would have happened ifC4 had been a hyperbola andl4 had
cut its two branches, thenl′′4 would have actually puty4 andy′4 outside the
trianglet4.
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Figure 3: (top) Inπ3, the linel3 cutsC3, C′3 andC′′3 in six
points, close tox3 andy3. (bottom) From 6 intersections to
6 + 6 + 4 = 16: (left) nearx3 (right) neary3.

By choosingε3 small enough (ε4 being fixed) we can also
guarantee thatl′3 intersectsC′′3 in two points close toy3 and
y′3. Finally, we chooseε3 big enough with respect to the
curvature ofC3 and C′3 so that3 the portions ofC3 and C′3
close tox3 andx′3 in the angular sector betweenl3 and l′3
both admit a linel′′3 that intersects both conics in two points
each within that sector. Note thatl′′3 is almost tangent to both
curvesC3 andC′3.

Note the apparent contradiction:ε3 must be big enough
w.r.t. curvature of and distance betweenC3 andC′3 to allow
for the existence ofl′′3 , yet small enough forl′3 to intersect
C′′3 . We resolve it by arguing that choosing the direction of
rotation ofl′3 carefully: In case (i), we rotatel′3 towards the
direction of the concavity ofC′′3 . Thus the two intersections
with C′′3 still exist for quite large values ofε3. Note that case
(ii) poses no problem. This essentially removes the contra-
diction.

Again, the local convexity of bothC3 andC′3 is used to
guarantee that all these points lie on the trianglet3 bounded
in π3 by l3, l′3 and l′′3 . Together,l1, l2, t3 and t4 have
6 + 6 + 4 = 16 tangent lines. The situation is depicted
in Figure 3(top).

Construction of t2. In π2, in addition toC2, we now have
three other conics very close toC2 (intersection withπ2 of4

Q(l1, l3, l′4), Q(l1, l′3, l4), andQ(l1, l′3, l
′
4)). There are also

a second group of two conics resulting from the intersection
with π2 of Q(l1, {l3, l′3}, l′′4 ), which may be almost tangent
to l2 neary2 as in case (i) above, or hyperbolas whose two
branches intersectl2 neary2 as in case (ii) above. Similarly,
there is a third group of two conics resulting from the inter-
section withπ2 of Q(l1, l′′3 , {l4, l′4}), which intersectl2 near
x2 (either case (i) or (ii)). (See Figure 4(left).)

3This is the sore point:ε3 must be big enough w.r.t. curvature of and
distance betweenC3 andC′3 to allow for l′′3 , yet small enough forl′3 to
intersectC′′3 . Until we do the concrete construction, the doubt remains...

4We will extendQ() with a set-theoretic notation to avoid tedious repe-
titions. For instance,Q(l1, {l3, l′3}, {l4, l′4}) refers to the union of the four
possible combinations.

As before, we pick a point onl2 outside the segment
(x2, y2) (say neary2) and rotatel2 into a linel′2 by a small
angleε2. Unfortunately, if the second and third groups are
both in case (i) and their tangencies are on opposite sides of
l2, we cannot choose the direction of rotation as forl3 above,
because we may lose the intersections with the group whose
tangency is on the other side of the direction of the rotation.
It turns out that we can place the four linesl1, l2, l3, andl4
such that the second and third groups are both tangent tol2
on the same side. Thus we can choose to rotatel′2 towards
that direction (without constraints onε2) and intersect the
first group of conics in eight points, and the second and third
groups in another eight points, four neary2 and four nearx2,
introducing sixteen new transversals.

As for l′′2 , we choose it almost tangent to the first group
of four conics so that intersects all four twice nearx2 in the
angular sector betweenl2 and l′2. Again, the apparent con-
tradiction on the order of magnitude ofε2 w.r.t. the curvature
of these conics nearx2 and the need forε2 to be small is re-
solved by the direction of rotation which guarantees the exis-
tence of the intersections betweenl′2 and the second group of
conics even for rather large values ofε2. Thusl′′2 introduces
an additional eight new transversals.

Let the trianglet2 be bounded inπ2 by l2, l′2 and l′′2 .
Again, the local convexity of all the conics guarantees that
all the new transversals tol2, l′2 andl′′2 are actually tangent
to the trianglet3 bounded inπ3 by l3, l′3 and l′′3 . Together,
l1, t2, t3 andt4 have16 + 12 + 8 = 36 tangent lines. (See
Figure 4(right).)
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Figure 4: (left) Inπ2, the linel2 cuts three groups of conics,
those close toC2, those tangent tol2 atx2, and those tangent
aty2. (right) From 16 intersections to16 + 16 + 8 = 40.

Construction of t1. In π1, the situation has multiplied.
Close to C1 are eight conics (includingC1) intersection
of π1 with Q({l2, l′2}, {l3, l′3}, {l4, l′4}). There are also
four conics (second group) intersectingl1 neary1, result-
ing from the quadricsQ({l2, l′2}, {l3, l′3}, l4, l′′4 ). And two
groups (third and fourth) of four conics each, intersecting
l1 nearx1, which result fromQ(l′′2 , , {l3, l′3}, {l4, l′4}) and
Q({l2, l′2}, l′′3 , {l4, l′4}). (See Figure 5(left).)

We play the same game, and rotatel1 into l′1 by an angle
ε1, introducing sixteen new transversals with the first group
of conics. We cannot ignore the case where the second,
third and fourth groups all fall in case (i), but in this case
at least two groups share the same side of tangency, so we
can choose the direction of rotation ofl′1 to introduce at least
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another sixteen new transversals, without restrictions onε1.
Finally, we can choosel′′1 to close the trianglet1 in such a
way that its side cuts the eight conics of the first group be-
tweenl1 andl′1 into sixteen new points, all on the boundary
of t1 by again using the local convexity of all conics nearx1

andy1. The situation is depicted in Figure 5(right).
Hence the four triangles thus constructed have a total of

40 + 16 + 16 + 16 = 88 lines tangent, finishing the proof of
Theorem 1.
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Figure 5: Inπ1, the line l1 cuts eight conics (first group),
and three groups of four conics each, bringing the number of
intersections from 36 to40 + 16 + 16 + 16 = 88.

Remark. In what precedes, we have only accounted for the
tangents that pass through only one of the sides supported
by l′′1 , l′′2 , l′′3 , and l′′4 . Because of the short length of each
of these segments, it is hard to say whether there are com-
mon tangents to the triangles through more than one of these
sides. If the construction could be more controlled, perhaps
the lower bound could be increased.

3 Proof of Theorem 2

It is known that four segments have at most four transversals
(or an infinity); moreover, if the four supporting lines do not
belong to a common ruled surface, then there can be at most
two transversals[2]. Thus if the triangles are inT4, the four
triangles have at most34 = 81 quadruplets of edgesformed
by picking an edge from each triangle. Each quadruplet can
have at most two transversals, and hence we very easily ob-
tainntriangles

4 6 81× 2 = 162.
We now indicate how to improve on this bound when the

triangles are disjoint. We can show that there are at most 78
quadruplets to consider in the disjoint case, thus bounding
the number of common tangents by 156. The proof follows
that on the upper bound for the number of tangents to four
polytopes[1], but limits the number of configurations for dis-
joint triangles inR3. For clarity, we divide the proof into two
lemmas. For lack of space, however, we do not include the
proofs of Lemma4, and only sketch the proof of Lemma 5.

Lemma 4 Fix an edgee of a triangle, sayt1. The number of
quadruplets of common tangents which containe is always
at most 27, at most 26 if the line supportinge stabs only one
of the trianglest2, t3 or t4, and at most 25 if it stabs none.
Those bounds are tight.

Lemma 5 Given four disjoint triangles, the number of
quadruplets that lead to a common tangent is bounded by
78.

Proof. (Sketch) The proof proceeds by constructing a bi-
partite graph between twelve nodes representing each edge
ej
i of every triangletj (i = 1, 2, 3 and j = 1, 2, 3, 4) and

four nodes representing each triangletk (k 6= j). An arc
betweenej

i andtk indicates that the line supportingej
i stabs

tk. (We usearc to describe the edges of the graph, in order
to avoid confusion between edges of the graph and edges of
the triangles.) The proof rests on the claim that this graph
can have at most 18 edges (out of a possible 48). We do
not prove the claim for lack of space, but its proof rests on
a careful examination of the relative position of two disjoint
triangles, and using Lemma 4. �

Remark. In the disjoint case, it is possible to pick four tri-
angles whose bipartite graph has exactly 18 edges, showing
that the argument above cannot be improved further without
additional ideas. It is conceivable, however, that finding fur-
ther restrictions on the bipartite graph may lead to lower the
upper bound.
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