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Abstract. We establish upper and lower bounds
on the number of connected components of lines
tangent to four triangles iR3. We show that four
triangles inR3 may admit at least 88 tangent lines,
and at most 216 isolated tangent lines, or an in-
finity (this may happen if the lines supporting the
sides of the triangles are not in general position).
In the latter case, the tangent lines may form up to
216 connected components, at most 54 of which
can be infinite. The bounds are likely to be too
large, but we can strengthen them with additional
hypotheses: for instance, if no four lines support-
ing each an edge of a different triangle cannot lie
on a common ruled quadric, then the number of
tangents is always finite and at most 162; if the
four triangles are disjoint, then this number is at
most 210; and if both conditions are true, then the
number of tangents is at most 156 (the lower bound
88 still applies).

1 Introduction

Sylvain Lazard Frank Sottild

Our results. By a triangle inR3, we understand the con-
vex hull of three distinct points iiR3. Hence, we are not
discussing degenerate triangles which reduce to a segment
or to a point. Given four triangles, t», t3, andt, in R3,
denote byn(ti,ts, t3,t4) the number of lines tangent to all
four triangles' Note that this number can be infinite if, for
example, four sides of the segments are supported by four
lines that lie on a hyperbolic paraboloid. Let us denote by
T, the set of all quadruplets of trianglés , to, t3, t4) with
the property that for any of the* = 81 quadruplets of lines
(€1, ¥¢2,¢5,24) such that/; supports an edge df, the four
lines do not belong to a common ruled surface (hyperboloid),
and no two of these lines are coplanar. In particular, for
every (t1,ta,t3,t4) € Ty, there are at most two lines tan-
gent to the lines supporting any quadruplet of edges, hence
n(t1,ta, t3, t4) is finite and at most62.

In this paper, we are primarily interested in the number

triangles
ny B =

4 max

n(ty, ta, ts, t
(t1,ta,ts,ts)ETY <1 273 4)

Our main results are two-fold. First, we show that

triangles

Theorem 1 We haven, > 88. More precisely, there

In this paper, we are interested in lines tangents to four trian- is & configuration of foudisjointtriangles inR? which admit
gles. Our interest in lines tangent to triangles, and generally finitely many, but at least 88, distinct tangent lines.

to polytopes inR?, is motivated by visibility problems. In

computer graphics and robotics, scenes are often representegi
as unions of not necessarily disjoint polygonal or polyhedral

Next, we improve the upper bound an slightly, in the
sjoint case.

objects. The objects that can be seen in a particular directionThegrem 2 We haveniriangles < 162. More precisely, if
from a moving viewpoint may change when the line of sight four triangles are i, they admit at most62 distinct tan-
becomes tangent to one or more objects in the scene. Sincgent lines. This number is at moki6 if the triangles are
the line of sight then becomes tangent to a subset of the edgegjjsjoint.

of the polygons and polyhedra representing the scene, ques-

tions about lines tangent to four polygons arise very naturally ~ Unfortunately, we cannot claim that if the number of tan-

in this context.
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when it is finite it could be more than 162. In this case, we
may group these tangents by connected components: two
line tangents are in the same component if one may move

1As a side note, observe that a line tangent to four triangles cannot prop-
erly cross the interior of these triangles, and so it corresponds to an unoc-
cluded line of sight. If it is contained in the plane of any of these trian-
gles, it may intersect the interior but it is not considered a proper crossing.
Indeed, the line is still tangent to the triangle considered as a degenerate
three-dimensional polytope.



continuously between the two lines while staying tangent to
the four triangles. Let/(t1, t2, t3, t4) denote the number of

connected component$ tangent lines to four triangle, and s A F YR o
let

s triangles /

Ty - any ({Ri},{t&m) n (tla t23 t3a t4)
Each quadruplet of edges may induce up to four components
of tangent lines, bringing the upper bound3®{. We can
give a better bound on the numbe€y of connected compo-
nents of lines tangent to four triangles in any position. We
only state the following theorem (the proof will appear in the
complete version).

Theorem 3 We haven,"*"#'*® < 216 (and210 if the trian-

gles are disjoint). Moreover, the number ioffinite compo- ] o ] ) )
nents is bounded above By. Figure 1. The initial configuratiody, I, I3 andil4 with the

hyperbolic paraboloid,.

2 Proof of Theorem 1 onl, outside the coni€, (on the side of4) and rotaté, into

L _alinel) by a very small angle,. This introduces two points
For the lower bound, we construct four disjoint triangles in «, andy/,. Then we pick a liné// which intersect€, in two

such a way that Fhey admit at Ieast_ 88 tangents. At the heartpoints in the very small arc from to ;. Note that this line
of our construction is a perturbation scheme from a con- ig 4most tangent t6,. The linesls, ; andi/ thus intersects

figuration of linesly, 5, I3 andi4 which have exactly two C, into six points, which are as close as we want:foand
transversal lines andy. We will perturb eact; into copla- |~ The |ocal convexity of?, aroundy ensures that those
nar lines/; gndlg’, in ordert_o multiplyz andy_lnto two sets points actually lie on the triangle, bounded byly, I, and
of tangent lines. By choo;mg thfa perturbation carefu!ly, we I 2 These six points corresponds to six lines tangerit to
argue that those tangent lines will be tangent to the tnanglesl% I; and the triangle,, which are as close as we wantto
t; defined by the three linds, I, andl’. andy. (See Figure 2(right).)

One way to obtain such a configuration is by taking
l2, I3 on a hyperbolic paraboloid. This paraboloid admits
two families of ruling lines, and we take, 5, I3 in one of
the two families. Next we choose a vertical planginter-
secting the paraboloid in a conic(actually, a parabola; see
Figure 1) and a line inry that cutsC in two point, z4, and
y4. The lines that belong to the second family of lines ruling
the paraboloid passing through these two points are denoted
x andy, and satisfy the conditions stated above. In order to
avoid any kind of degenerate configurations, we may take all Figure 2: (left) Inry4, the linel4 cutsCy in two points,z, and
four lines algebraically independent. y4. (right) From 2 intersections to 6.

For our construction, a bit of notation helps. Given three
skew linesa, b, ¢, we denote byl(a,b,c) the set of their  Construction of t;. The second step takes placesig.
line transversals, and (q, b, ¢) the quadric ruled by these  The quadricQ(ly,l2,1}) cutsm, in a conicC} very close to
lines. In particular we will denote b@; the quadric pass-  C,, while Q(ly,15,1}) cutsTy in a conicCy (not necessarily
ing through the lines; (i € {1,2,3,4},i # j). We denote  close taCs). Note that’} intersectss in two pointsz} andy
by ; a (not necessarily vertical) plane passing throégh  very close tars andys, while C4 intersectss in two points
(i = 1,2,3,4). Note that each plane; intersects the cor-  petweenys andy}. Thus either (i)C% is almost tangent té,

responding quadri@; in a non-degenerate conig, and in - or (i) it is hyperbola whose two branches are almost parallel
this plane the liné; intersect<’; in two points,z; = 2N m  inthe neighborhood ofs. (See Figure 3(left)).
andy; = y N m;. We can always pickr; such thatC; is a In any case, we pick a point oy outside the segment

parabola, or in case of a hyperbola, such thattersects the (15, 43) (this time on the side afs) and rotatds into a line
same branch twice. This will be important in the construc- 14 by a small angless. Thusij intersectsCs in two points

tion below and is referred to as thecal convexityof C; in close tozs andys andC} in two points close taf andys.
the neighborhood of andy.

2Local convexity is crucial here: 4 had been concave in a neighbor-
. . . . . R hood ofy, as would have happeneddf, had been a hyperbola aiadhad
Construction Of_t4- The situation int, IS de_plcted_ in Flg-. cut its two branches, thelff would have actually pujs andy/, outside the
ure 2(left). The first step of our construction is to pick a point trianglet,.



As before, we pick a point o, outside the segment
(z2,y2) (Say neany) and rotatd, into a linel}, by a small
angles,. Unfortunately, if the second and third groups are
both in case (i) and their tangencies are on opposite sides of
l5, we cannot choose the direction of rotation ad{above,
because we may lose the intersections with the group whose
tangency is on the other side of the direction of the rotation.
It turns out that we can place the four lings i, I3, andl,
| ‘ such that the second and third groups are both tangént to
| | on the same side. Thus we can choose to rdtatewards
N | that direction (without constraints orp) and intersect the
N E— first group of conics in eight points, and the second and third
groups in another eight points, four ngarand four neat,,
introducing sixteen new transversals.

As for I, we choose it almost tangent to the first group
of four conics so that intersects all four twice nearin the
angular sector betwedn andl}. Again, the apparent con-

By choosings; small enoughd being fixed) we can also  tradiction on the order of magnitude of w.r.t. the curvature

Figure 3: (top) Inms, the linels cutsCs, C; andCy in six
points, close tacs andys. (bottom) From 6 intersections to
6 + 6 + 4 = 16: (left) nearx; (right) nearys.

guarantee tha, intersects’/ in two points close tg; and of these conics near, and the need for, to be small is re-

y4. Finally, we choose; big enough with respect to the solved by the direction of rotation which guarantees the exis-
curvature ofCs andCj so that the portions ofCs and C} tence of the intersections betwegrand the second group of
close tozs andz} in the angular sector betweénand !} conics even for rather large valuessaf Thusl) introduces
both admit a lind}] that intersects both conics in two points ~ an additional eight new transversals.

each within that sector. Note thi4tis almost tangent to both Let the trianglet; be bounded inr; by Iy, I; andl;.
curvesCs andcj. Again, the local convexity of all the conics guarantees that

Note the apparent Contradictio@g must be b|g enough all the new transversals g, 1/2 andl’2’ are actually tangent
w.r.t. curvature of and distance betwe&nandC} to allow to the trianglet; bounded inr3 by I3, I5 andly. Together,
for the existence of}, yet small enough fok; to intersect 1, t2, t3 andty havel6 4 12 + 8 = 36 tangent lines. (See
CY. We resolve it by arguing that choosing the direction of Figure 4(right).)
rotation oflj carefully: In case (i), we rotat® towards the
direction of the concavity of4. Thus the two intersections
with Cf still exist for quite large values af;. Note that case
(i) poses no problem. This essentially removes the contra-

diction. 7
Again, the local convexity of botlf; andC’3 is used to / W <

guarantee that all these points lie on the triariglbounded
in w3 by I3, I5 and . Together,l;, ls, t3 andt, have
6 + 6 +4 = 16 tangent lines. The situation is depicted Figure 4: (left) Inmy

v the linel, cuts three groups of conics,
in Figure 3(top). those close t@,, those tangent th atz», and those tangent
atys. (right) From 16 intersections tt6 + 16 + 8 = 40.
Construction of t5. In g, in addition toC,, we now have
. . : . 4
three other conics very close & (intersection with, of Construction of #;. In 7, the situation has multiplied.

I / li /
= second roup of o conics resuling rom the interssction 1998 ©0C. are eight conics (ncluding’) intersectio
group 9 f o with Q({lo, 5}, {I5, 14}, {ls,1,}). There are also

H !/ " 1
with  of Q(Zl’.{li*’lff}’ lf*)’ which may be almost tangent four conics (second group) intersectihgneary;, result-
to l; nearys as in case (i) above, or hyperbolas whose two ing from the quadricgQ({ls, 3}, {ls, 14}, 11, }). And two
! . . . 2,020,535 03504504 )

?hr:pecihsez 'tﬂtif(;seti neary, as in case (i gbove. S|m|la_1rly, _ groups (third and fourth) of four conics each, intersecting

group of two conics resulting from the inter I, near:, which result fromQ(1y, , {ls, 14}, {1, 1,}) and
. . 17 / . . i) ) ) b )
section withmy of Q(1, 15, {l4,13}), which intersect, near O({la, 1L}, 14, {14, 1,}). (See Figure 5(left).)

x2 (either case (i) or (ii)). (See Figure 4(left). :
2 ( (1) or (D). ( 9 (left).) We play the same game, and rotatento /; by an angle
3This is the sore pointzz must be big enough w.r.t. curvature of and €71, introducing sixteen new transversals with the first group
distance betweed; andC; to allow for I3/, yet small enough fof; to of conics. We cannot ignore the case where the second,
interseciC'. Until we do the concrete construction, the doubt remains... ; : ; ; ;
4We will extendQ() with a set-theoretic notation to avoid tedious repe- third and fourth groups all fall in casg (), but in this case
titions. For instanceQ(l1, {I3, 14}, {1, 1, }) refers to the union of the four &t least two groups share the same side of tangency, so we

possible combinations. can choose the direction of rotationiéfto introduce at least




another sixteen new transversals, without restrictions,;on  Lemma5 Given four disjoint triangles, the number of
Finally, we can choos#' to close the triangle; in such a quadruplets that lead to a common tangent is bounded by
way that its side cuts the eight conics of the first group be- 78.
tween!; andl] into sixteen new points, all on the boundary
of ¢t; by again using the local convexity of all conics near
andy;. The situation is depicted in Figure 5(right).

Hence the four triangles thus constructed have a total o
40 + 16 + 16 + 16 = 88 lines tangent, finishing the proof of
Theorem 1.

Proof. (Sketch) The proof proceeds by constructing a bi-
partite graph between twelve nodes representing each edge
feg of every trianglet; (¢ = 1,2,3 andj = 1,2,3,4) and
four nodes representing each triangle(k # j). An arc
betweere] andt;, indicates that the line supportirg stabs
tx. (We usearc to describe the edges of the graph, in order
to avoid confusion between edges of the graph and edges of
the triangles.) The proof rests on the claim that this graph
can have at most 18 edges (out of a possible 48). We do
not prove the claim for lack of space, but its proof rests on
a careful examination of the relative position of two disjoint
triangles, and using Lemma 4. d

Figure 5: Inmy, the linel, cuts eight conics (first group), Remark. Inthe disjoint case, itis possible to pick four tri-

and three groups of four conics each, bringing the number of 21gles whose bipartite graph has exactly 18 edges, showing
intersections from 36 td0 + 16 + 16 + 16 = S8. that the argument above cannot be improved further without

additional ideas. It is conceivable, however, that finding fur-
ther restrictions on the bipartite graph may lead to lower the

Remark. Inwhatprecedes, we have only accounted for thedeper bound.

tangents that pass through only one of the sides supporte
by 17, 14, 14, andlj. Because of the short length of each

of these segments, it is hard to say whether there are com-Acknowledgments
mon tangents to the triangles through more than one of these

sides. If the construction could be more controlled, perhaps Thlzresearch wasl gmated at FheCSecond MéGIII-r:I_\IRI,T: V\tlaorksm?
the IOWer bound Could be increased. on omputatlona eometry n omputer rapnics, repruary /—

14, 2003, co-organized by H. Everett, S. Lazard, and S. Whitesides,
and held at the Bellairs Research Institute of McGill University. We

3  Proof of Theorem 2 would like to thank the other participants of the workshop for useful
discussions.
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