Injectivity of 2D Toric B ézier Patches

Frank Sottile Chun-Gang Zhu
Department of Mathematics School of Mathematical Sciences
Texas A&M University Dalian University of Technology
College Station, TX 77843, USA Dalian 116024, China
Email: sottile@math.tamu.edu Email: cgzhu@dlut.edu.cn

Abstract—Rational Bézier functions are widely used as has a point of self-intersection. The cited works provide
mapping functions in surface reparameterization, finite element  conditions which imply no self-intersection. Our purpose
analysis, image warping and morphing. The injectivity (one-to- 5 gjtferent: We give conditions on the control points for

one property) of a mapping function is typically necessary for . . .
these applications. Toric Bezier patches are generalizations of 2D patches which are equivalent to there being no self-

classical patches (triangular, tensor product) which are defined  intersection for any choice of positive weights.

on the convex hull of a set of integer lattice points. We give The basi its in th tri deli f
a geometric condition on the control points that we show is € basic units In the geometric modeling of sur-

equivalent to the injectivity of every 2D toric Bézier patch with ~ faces are rational &ier simplices and tensor product
those control points for all possible choices of weights. This patches. Krasauskas [8] introduced toriezier patches as
condition refines that of Craciun, et al., which only implied g natural extension of classical rational patches and their
injectivity on the interior of a patch. higher-dimensional generalizations, thezger simploids by
Keywords-Bézier patches; toric patches; injectivity; mapping  DeRose, et al. [4]. The theory of toric patches is based
upon real toric varieties from algebraic geometry [9], and
they provide a general framework in which to pose many
I. INTRODUCTION questions concerning classical rational patches.

Mapping functions play an important role in computer To study dynamical systems arising from chemical reac-
graphics, computer aided geometric design (CAGD), finitetion networks, Craciun et al. [3] prove an injectivity theor
element analysis (FEA) and some related areas. The injeder certain maps. This was adapted in [2] to give a geometric
tivity of mapping functions, that is, the absence of self-condition on a set of control points which implies that the
intersection, is crucial in image warping and morphing [11] resulting toric Bezier patch has no self-intersection, for any
free form deformation [1], surface reparameterizatiom,sm choice of positive weights. That result contains a minor flaw
on. Many authors have investigated conditions which implyin that it only guarantees injectivity in the interior of atgla.
injectivity. Goodman and Unsworth [7] proposed a sufficientWe correct that flaw, at least for 2D patches, showing that the
condition for the injectivity of a 2D Bzier function. For condition from [2] plus the mild additional hypothesis that
the control points of an x n tensor product patch, their the vertices correspond to distinct control points is eajeiut
condition involve2m(m+1)+2n(n+1) linear inequalities.  to injectivity for every choice of positive weights.

For image morphing, Choi and Lee [1] presented a sufficient

iti injectivi uniform cubic B- o ) :
condition for the injectivity of 2D and 3D eralizations of the classical rational patches. In Sec8on

spline functions. Their condition provides a single boundwe explain our condition and sketch its equivalence to the
for the displacements of control points that guarantees the P q

injectivity of the cubic B-spline function. Floater [6] sties injectivity of every 2D patch with a given set of control

a sufficient condition for injectivity of convex combinatio points, for all possible we|ghts. More- details, including
mappings over triangulations. examples of the geometric arguments of Lemma 3.5 and

Fig. 1 displays rational plane cubicéBier curves with Corollaries 3.6 and 3.7 will be added in the complete version

their control polygons (bold lines). The curve in Fig. 1(a) of this paper. We conclude some remarks on how to check

has no points of self-intersection. The curve in Fig. 1(b)t[:':zr;:)er:di'lttli(r)wn'[,e?r:]gs,ugf g:z::elf/vilzelﬂnfea;rt rﬂ;gg natural, and

has one point of self-intersection, which may be removed
by varying the weights as shown in Fig. 1(c). The control While our main interest is in establishing a criteria valid
polygon of the first curve is in convex position, so therein 3D, and in fact in all dimensions, we currently do not
are no positive weights for which the resulting®er curve  know how to add hypotheses to the condition of [2] so that
has self-intersection. For the other control polygon tleeee  the result will be equivalent to injectivity for any choicé o
weights (e.g. Fig. 1(b)) such that the resultingzier curve  weights in 3D.

In Section 2, we introduce toric &ier patches as gen-



defined thetoric Bernstein polynomial
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Figure 1. Cubic Bzier curves.
Il. TORIC BEZIER PATCHES those corresponding to an edgeare strictly positive on the

interior of ), we may deduce a little more.

Proposition 2.2: The image of the interior ofA lies
strictly in the interior of the convex hull of the control pbé
f(A), and the image of the interior of an edgdies strictly
Aq={(z,y) €ER*|0< hi(z,y),i=1,...,0}, within the interior of the convex hull of (6 N .A).

Toric Bézier patches include the classica@ZBer patches
and some multi-sided patches such as Warren’s polygonal
surface [10] which is a reparameterized toriezier surface.

Example 2.3 (Tensor product patchet)et m,n be pos-
itive integers. LetA be the integer points in ther x n
Ba(z) = hl(x)hl(a)h2(l.)h2(a) . hg(x)hé(a), (1) rectangIeA.:: {(z,]) 0 < i.g m, 0 §].' < n}. Then the
corresponding toric Bernstein polynomials (1) are

Let A C Z? be any finite set of integeiattice points
Its convex hullA 4 is a polygon whose vertices are lattice
points. This polygon is also defined by #sge inequalities

where h;(z) = a;z + b;y + ¢; are linear polynomials with
integer coefficients antu;, b;) is relatively prime.
For each integer lattice poiri € A, Krasauskas [8]

These toric Bernstein polynomials are non-negative\oq

written F,, as.A and f are understood.

and the collection of alB, has no common zeroes ih 4. Bug(@y) = a'(m—2)" "y (n—y)"7, @)
Let R4 be R with coordinates(wa € R | a € A)  and the toric Bzier patch (2) (with weights; ; = (V) (}))
indexed by elements ofl. is the rational tensor produciéRier patch of bidegre@n, n)
Definition 2.1: Let A C Z? be a finite set. A toric Bzier after the simple reparameterization= z:/m, t = y/n.
patch associated witH requires an assignmeyfit .4 — R* Example 2.4 (Triangular 8zier patches)Let m be a
(d = 2,3) of control pointsand a choice of weight® € RZ.  positive integer andd be the integer points in the triangle
The toric Bézier patchF,,: A4 — R? is the function with vertices (0,0), (m,0), and (0,m), A := {(i,5) |
Y e Waf () Ba() 0 < 4,5, 0 < m—1i,j}. The corresponding Bernstein

Fy(x) = Fajw(z) =

UNAC I (2)  polynomials (1) are B -
Bij(z,y) = 'y (m—az—y)" 7.

The degree of a toric &ier patch is encoded in its Then the toric Bzier patch (2) (with weightsy;; =
domain, differing from the classical patches as develope “j!(m”fi_j)!) is the rational Bzier triangle of degree: after
in [5]. These two types of patches share many propertieshe simple reparameterization= x/m, t =y/m.
which is explained in [8], [9]. Two properties in particular i
are important for us. [1l. INJECTIVITY OF 2D TORIC BEZIER PATCHES

One is the convex hull property, that the image /&f; Given a finite setd C Z* and a choicef: A — R? of
underF,, is contained in the convex hull of the control points control points, we consider the injectivity of toricéBier
F(A) with F,,(b) = f(b) if b is a vertex ofA4, and the patches as mapping functiorf§,: A4 — R? (2), for all
other is the boundary property, that the restrictionfof — choicesw € RZ of positive weights.

to an edge’ of A4 is a rational Bzier curve, defined by  Affinely independent pointsy, a;,a; determine an ori-
control points and weights corresponding to lattice poafts entation via the ordered basis —ay, a;—a, of R

. Definition 3.1: A choice f: A — R? of control points is
The boundary property may be seen directly by considerweakly compatiblef

ing the restriction to an edge. For the convex hull property, 1) There are affinely independent poirig, a;,a, of A
note that asw,fa.(x) is nonnegative,F,, (x) is a convex such thatf(ag), f(a1), f(az) is also affinely indepen-
combination of the control points, and B is a vertex, dent, and

then 5.(b) is zero unlesa = b. Since the toric Bernstein 2) For any affinely independent points),a),a) of
polynomials are strictly positive on the interior df (and A with the same orientation asag,a;,as, if



f(ag), f(a}), f(ay) is also affinely independent, then
it has the same orientation g$ay), f(a1), f(asz).

For the other implication, suppose that A — R? is
compatible. We show that the assumption ti#gt is not

Fig. 2 shows three sets of labeled points, indicatinginiective leads to a contradiction. _
assignments between them. The assignment between the firstVe first make several observations about the relative
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Figure 2. Weak compatibility.

positions of the pointsf(a) for a € A which are im-
plied by compatibility. Composing with a reflection of
R? if necessary, we may assume thataif,a;,a, and
f(ao), f(a1), f(ag) are both affinely independent, then they
induce the same orientation @®¥.

Let § be an edge ofA 4. There is some triple of points
d,d’,;a of A with f(d), f(d’), f(a) affinely independent
whered,d’ € § anda ¢ 4. Indeed, if there are no such
triples, then every point of (A) lies on every line segment

two sets is weakly compatible, but neither assignment to th@ctween two distinct points of(d N.A), which implies that

third set is weakly compatible.

We state Theorem 3.5 of [2] fdR?, which is their main
result on injectivity of toric Bzier functions (it holds in any
dimension). WriteAS for the interior of A 4.

Theorem 3.2:The mapF,, : A5 — R? is injective for
all w € RZ if and only if the assignmenf: A — R? is
weakly compatible.

In [2], the authors incorrectly stated this result &s is

the points off(6 N.A) are collinear and the line they span
containsf(A), which contradicts the first condition for weak
compatibility of Definition 3.1. This argument requires ttha
there be at least two distinct points ¢fd N .A), which
follows as the endpoints of (which are vertices ofA 4)
are mapped to different points undgr

Suppose that we list the poings),d;,...,d,, of N A
so that ifa € A\ ¢, andi < j, thend,, d;, a are positively

injective on all of A4, even though their proof was only oriented. Then eithef(d;), f(d;), f(a) are collinear or pos-
valid for the interior of the convex hull. Their proof showed iively oriented. Since there must be at least one suchetripl
that ', has no critical points in the interior, which shows with f(d,), f(d;), f(a) affinely independent, we deduce the

that it is an open map on%.

following.

This is the best possible result with these hypotheses: | emma 3.5:Every control point f(A \ 0) lies in the
Consider a bilinear patch where two control points coincideintersection of closed halfspaces

Specifically, letA = {(0,0), (0,1),(1,0),(1,1)} and sup-
pose that the control points af€0, 0), (0,1), (1,0)}, where
f(a) = a, except thatf(1,1) = (1,0). This assignment of
control points is weakly compatible, but, collapses the
edge betweet(l,0) and (1, 1) to the point(1,0).

(0,1) (1,1) (0,1)

(0,0) (1,0) (0,0) (1,0)

This example shows that more hypotheses are needed
ensure thatF, is injective onA 4, and those hypotheses
should imply that faces of\ 4 are not collapsed. In fact,
this is the only additional hypothesis needed.

Definition 3.3: A choice f: A — R? of control points is
compatibleif it is weakly compatible, and no two vertices
have the same image undgr

We state our main result.

Theorem 3.4:The mapF,, : A4 — R? is injective for
all w € ]R;‘ if and only if the assignmenf: A — R? is
compatible.

If a € Ais a vertex of Ay, then F,(a)

f(@).

{z e R? | f(d;), f(d;),z are positively orientefl

for i < j with f(d;) # f(d;), and this intersection has a
nonempty relative interior.

Corollary 3.6: For every edge) of A4 and everyb €
A\ 4, the control pointf(b) does not lie in the relative
interior of the convex hull off (6 N A).

To see this, note that the intersection of halfspaces of
Lemma 3.5 is either interior or exterior to the convex hull
of f(6 N.A), and if it is exterior, then it is separated from
the relative interior of the convex hull by a line. If there is
th edge’ so that this intersection lies in the interior of the
convex hull of f(6N.A), let &’ be a different edge. Then the
positions of the points of N A relative to the intersection
of halfspaces fop’ leads to a contradiction.

Corollary 3.7: If f: A — R? is compatible, then the
restriction of F}, to any edge of A 4 is injective.

To see this, fix an edgé and consider the intersection of
halfspaces of Lemma 3.5. This intersection is exterior & th
convex hull of f(§ N .A) and so consists of an unbounded
polyhedron,P. Consider the orthogonal projectian R? —

R along an unbounded direction @f. Then the mapr o
f:on A — R is a weakly compatible choice of control

Theorem 3.2, together with this observation, shows thapoints forj N A, and so the map o F, restricted to the

if F, is injective for allw € R4, then f: A — R? is
compatible.

edges is injective, by Theorem 3.2. But this implies that
the restriction ofF,, to ¢ is injective.
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