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Galois Theory and the Schubert Calculus

Galois theory originated by studying the symmetries of roots of poly-

nomials. Later, Galois groups came to be understood as encoding all

symmetries of field extensions. It is now a pillar of number theory and

arithmetic geometry.

Galois groups also appear in enumerative geometry, encoding subtle

intrinsic structure of geometric problems. This is not well-developed, for

such geometric Galois groups are very hard to determine. Until recently,

they were almost always expected to be the full symmetric group.

I will describe a project to shed more light on Galois groups in enumera-

tive geometry. It is focussed on Galois groups in the Schubert calculus,

a well-studied class of geometric problems involving linear subspaces.

It is best to begin with examples.
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The Problem of Four Lines

What are the lines mi meeting four general lines ℓ1, ℓ2, ℓ3, and ℓ4?

ℓ1, ℓ2, and ℓ3 lie on a unique hyperboloid Q of one sheet, and the lines

meeting them form one ruling of Q. Thus the solutions mi are the

lines in that ruling passing through the points of intersection ℓ4 ∩ Q.

Rotating the line ℓ4
180◦ around the point

p interchanges the two

solution lines m1, m2.

This shows that the

Galois group of the problem of four lines is the symmetric group S2.
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A Problem with Exceptional Geometry

Q: What 4-planes H in C8 meet four general 4-planes K1, K2, K3, K4

in a 2-dimensional subspace of each?

Auxiliary problem: There are four (h1, h2, h3, h4) 2-planes in C8

meeting each of K1, K2, K3, K4.

Fact: All solutions H to our problem have the form Hi,j = 〈hi, hj〉

for 1 ≤ i < j ≤ 4.

It follows that the two problems have the same Galois group, which is

the symmetric group S4. This permutes the 2-planes in the auxillary

problem and is the induced action on the six solutions Hi,j of the

original problem.

This action is not two-transitive.
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Galois Groups of Enumerative Problems

In 1870, Jordan explained how algebraic Galois groups arise naturally

from problems in enumerative geometry; earlier (1851), Hermite showed

that such an algebraic Galois group coincides with a geometric mon-

odromy group.

This Galois group of a geometric problem is a subtle invariant. When it

is deficient (not the full symmetric group), the geometric problem has

some exceptional, intrinsic structure.

Hermite’s observation, work of Vakil, and some number theory together

with modern computational tools give several methods to study Galois

groups.

I will describe a project to study Galois groups for problems coming from

the Schubert calculus using numerical algebraic geometry, symbolic

computation, combinatorics, and more traditional methods (Theorems).
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Some Theory

A degree e surjective map E
π
−→ B of equidimensional irreducible

varieties (up to codimension one, E → B is a covering space of degree

e)

Ã degree e extension of fields of rational functions π∗K(B) ⊂

K(E). Define the Galois group Gal(E/B) ⊂ Se to be the Galois

group of the Galois closure of this extension.

Hermite’s Theorem. (Work over C.) Restricting E → B to open

subsets over which π is a covering space, E′ → B′, the Galois group

is equal to the monodromy group of deck transformations.

This is the group of permutations of a fixed fiber induced by analytically

continuing the fiber over loops in the base.

Point de départ: Such monodromy permutations are readily and reliably

computed using methods from numerical algebraic geometry.
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Enumerative Geometry

“Enumerative Geometry is the art of determining the number e of

geometric figures x having specified positions with respect to other,

fixed figures b.” — Hermann Cäser Hannibal Schubert, 1879.

B := configuration space of the fixed figures, and X := the space of

the figures x we count. Then E ⊂ X × B consists of pairs (x, b)

where x ∈ X has given position with respect to b ∈ B.

The projection E → B is a degree e cover outside of some discriminant

locus, and the Galois group of the enumerative problem is Gal(E/B).

In the problem of four lines, B = four-tuples of lines, X = lines, and

E consists of 5-tuples (m, ℓ1, ℓ2, ℓ3, ℓ4) with m meeting each ℓi.

We showed that this has Galois group the symmetric group S2.
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Schubert Problems

The Schubert calculus is an algorithmic method promulgated by Schu-

bert to solve a wide class of problems in enumerative geometry.

Schubert problems involve

linear subspaces of a vector

space incident upon other

linear spaces, such as the

problem of four lines, and

the problems of 2-planes

and 4-planes in C8. ℓ1

ℓ2

ℓ3

ℓ4

m1

m2

Q

As there are many millions of computable Schubert problems, many

with their own unique geometry, they provide a rich and convenient

laboratory for studying Galois groups of geometric problems.
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Proof-of-Concept Computation

Leykin and I used off-the-shelf numerical continuation software to com-

pute Galois groups of simple Schubert problems, which are formulated as

the intersection of a skew Schubert variety with Schubert hypersurfaces.

In every case, we found monodromy permutations generating the full

symmetric group (determined by Gap). This included one Schubert

problem with e = 17, 589 solutions.

We conjectured that all simple Schubert problems have the full sym-

metric group as Galois group.

White and I have just shown that these Galois groups all contain the

alternating group.

The bottleneck to studying more general problems numerically is that

we need numerical methods to solve one instance of the problem.
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Numerical Project

Recent work, including certified continuation (Beltrán-Leykin,

Hauenstein-Liddell), Littlewood-Richardson homotopies (Vakil, Ver-

schelde, and S.), regeneration (Hauenstein), implementation of Pieri and

of Littlewood-Richardson homotopies (Martín del Campo and Leykin)

and new algorithms in the works will enable the reliable numerical

computation of Galois groups of more general problems.

We plan to use a supercomputer to investigate many of the millions of

computable Schubert problems. We intend to build a library of Schubert

problems (expected to be very few) whose Galois groups are deficient.

These data will help us to classify Schubert problems with deficient Galois

groups and to showcase the possibilities of numerical computation.

Problem. Software/algorithm development takes a lot of time.
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Vakil’s Criteria

A Schubert problem is at least alternating if its Galois group contains

the alternating group. Vakil introduced two combinatorial criteria for

showing that a Schubert problem is at least alternating. The first is

simple combinatorics, which was used to prove:

Theorem. (Brooks, Martín del Campo, S.) The Galois group of any

Schubert problem involving 2-planes in Cn is at least alternating.

Vakil’s second criterion requires 2-transitivity. By it, to show high-

transitivity (Se or Ae), we often only need 2-transitivity. Interestingly,

all known Galois groups of Schubert problems are either at least alter-

nating or fail to be 2-transitive.
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Vakil’s Criteria II

White and I are studying 2-transitivity using geometry and combinatorics.

Theorem. [S.-White]
Every Schubert problem involving 3-planes in Cn is 2-transitive.
Every special Schubert problem is 2-transitive.

Ã The proof suggests that not 2-transitive implies imprimitive.

Vakil’s geometric Littlewood-Richardson rule, his criteria, and some 2-

transitivity give an algorithm that can show a Schubert problem has at

least alternating monodromy. Using the simpler geometric Pieri rule, we

show:

Theorem. [S.-White] Every simple Schubert problem is at least alter-

nating.

We are also able to prove that several infinite families of simple Schubert

problems have full symmetric Galois group.
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Specialization Lemma

Given π : E → B with B rational, and b ∈ B(Q) the fiber π−1(b)

has a minimal polynomial pb(t) ∈ Q[t]. In this situation, the algebraic

Galois group of pb(t) is a subgroup of Gal(E/B).

Working modulo a prime, the minimal polynomial of such a fiber is easy

to compute when e . 600. The degrees of its irreducible factors give

the cycle type of a Frobenius element in the Galois group.

This quickly determines the Galois group when it is the full symmetric

group, and allows the estimation of the Galois group when it is not.

Using Vakil’s criteria and this method, we have nearly determined the

Galois groups of all Schubert problems involving 4-planes in C8 and C9.

(The first interesting case.) The deficient Schubert problems fall into a

few easily-identified families, which suggests the possibility of classifying

all deficient Schubert problems and identifying their Galois groups.
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Combinatorial Shadows of Deficient
Probems

Many deficient problems have

• Restrictions on numbers of real solutions (unsurprising).

• Combinatorics reflecting structure of Schubert problem/Galois group.

Partitions encode Schubert conditions:

Eg. in G(4, 8), (4-planes in C8)

←→ the set of 4-planes meeting a 2-plane

L2 in a 1-plane and sharing a 2-plane with a

5-plane L5, where L2 ⊂ L5.
︸ ︷︷ ︸

8−4

dim
1
2
3
4

4 3 2 1
5 4 3 2
6 5 4 3
7 6 5 4
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Reprise: A Problem with Exceptional
Geometry

Q: What 4-planes H in C8 meet four general 4-planes K1, K2, K3, K4

in a 2-dimensional subspace of each?

Auxiliary problem: There are four (h1, h2, h3, h4) 2-planes in C8

meeting each of K1, K2, K3, K4.

Schematically, 4 = 4.

Fact: All solutions H to our problem have the form Hi,j = 〈hi, hj〉

for 1 ≤ i < j ≤ 4.

Schematically,
4
= 6.
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Fillings Give Numbers of Solutions

· · · is the problem of four lines.

Its two solutions correspond to two fillings:

The auxillary problem, · · · , has four

fillings:

For the deficient problem, · · · , there are six

fillings:
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A Deficient Schubert Problem

· · · · · · · = 4 in G(4, 8)

Fillings
The first two and last two conditions give an

auxillary problem of four lines.

Look at the four corners:

For each solution of the auxillary problem,

the middle four conditions give another prob-

lem of four lines, and this is reflected by the

possible fillings.

The Galois group is S2 ≀ S2, which is the

dihedral group of symetries of a square.
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Thank You!
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