
Toric Compactifications and Discrete
Periodic Operators

Minisymposium on Spectral theory of discrete and
continuous models in quantum mechanics

4th SIAM TX/LA Annual Meeting 6 November 2021

Frank Sottile
Texas A&M University

sottile@math.tamu.edu

Work with Matthew Faust



Overview

The spectrum of a self-adjoint difference operator L on a Z
d-periodic graph

Γ is represented by the dispersion relation of its Floquet transform, which is

a hypersurface in T
d × R. (T ⊂ C

× is the unit circle.)

Complexifying gives an algebraic hypersurface in (C×)d × C.

This has a natural compactification as a hypersurface in a projective

toric variety X associated to the graph Γ.

This construction clarifies the structure of the complex dispersion relation

at different infinities, as well as the real algebraic geometry nature of the

original dispersion relation.

It also raises the question of extending the transformed operator to the

’boundary’ of X .
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Operator on a Discrete Periodic Graph

Let Γ be a Zd-periodic locally finite graph,

with adjancency relation ∼.

Write v+α for the translation of vertex

v by α ∈ Z
d

Choose a fundamental domain

W ⊂ vertices(Γ).

Fix Z
d-periodic labels.

V : vertices(Γ) → R and c : edges(Γ) → R.

These parameters give the Laplace-Beltrami difference operator

L = L(V, c) on functions f : vertices(Γ) → R,

Lf(v) :=
∑

v∼u

cu,v
(

f(v) − f(u)
)

+ V (v)f(v) .

This is self-adjoint, and we want to study its spectrum.
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Floquet Transformation

Floquet (Fourier) transform leads to an operator L on functions

f : vertices(Γ) × T
d → R such that

f(v+α, z) = z
α
f(v, z) (z

α
= z

α1
1 · · · z

αd
d

= e
α·k2πi

) .

f is determined by f(v, z) for v ∈ W , the fundamental domain.

This is a vector of functions, f(v) : Td → R, for v ∈ W . Then

Lf(v) =
∑

v∼(u+α)

cv,u+α

(

f(v) − z
α
f(u)

)

+ V (v)f(v) .

L(z) is a W × W matrix of Laurent

polynomials in Floquet parameters z.

The dispersion relation is defined by

0 = det(L(z) − λIW ) .

It is a subset of Td × Rλ.

Its projection to Rλ is the spectrum of L.
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Floquet and Fermi Varieties

It makes good algebraic sense to allow complex parameters

V : vertices(Γ) → C and c : edges(Γ) → C,

complex-valued functions f , and complex Floquet parameters, z ∈ (C×)d.

We still have

Lf(v) =
∑

v∼(u+α)

cv,u+α

(

f(v) − z
α
f(u)

)

+ V (v)f(v) .

Define Φ = ΦV,c(z, λ) := det(L(z) − λIW ), a Laurent polynomial

whose coefficients depend upon the parameters V, c.

We have the (complex) Floquet variety

V(Φ) := {(z, λ) | Φ(z, λ) = 0} ⊂ (C
×
)
d
× Cλ ,

and the (complex) Fermi hypersurface V(Φ) ⊂ (C×)d (λ is fixed).

Several talks discuss properties of these varieties (Faust, Matos, Villalobos).
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Compactifications

Compactification is an old theme in algebraic geometry (19thc.),

as well as in spectral theory (1990’s).

(∗) Oftentimes compactifying gives the ’correct perspective’.

(∗) Compactifying allows global methods/constructions.

(∗) Information at infinity is sometimes easier to see.

(∗) A well-chosen compactification organizes the information at infinity.
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Interchanging Nonlinearities

A common method in algebraic geometry is to replace a nonlinear equation

by an equivalent linear equation.

Example. Let Φ = 3z−1
1 −5z−1

2 +7−5z2+3z1.

Exponent vectors of monomials in Φ are its support, A = .

These monomials define a map from (C×)2,

ϕ : (z1, z2) 7−→ [z
−1
1 , z

−1
2 , 1, z2, z1] .

If y1, . . . , y5 are the coordinates of the codomain and

Λ := 3y1−5y2+7y3−5y4+3y5, then Φ = Λ ◦ ϕ.

When the codomain of ϕ is a projective space, the closure of the image

is a compactification, XA, of (C×)2.

This turns the nonlinear polynomial Φ on (C×)2

into a linear polynomial on XA.
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Toric Compactification I

In general, a hypersurface V(Φ) in (C×)d often has an optimal

compactification in a projective toric variety associated to Φ.

Exponents of monomials in Φ are its support A = A(Φ) ⊂ Z
d, and

ϕA : (C
×
)
d
∋ z 7−→ [z

α
| α ∈ A] ∈ P

A
,

where P
A is the projective space with coordinates yα indexed by A.

If we write Φ =
∑

α∈A bαz
α, then the linear form

Λ :=
∑

α∈A

bαyα

pulls back to Φ in that Φ = Λ ◦ ϕA.

Thus the nonlinear function Φ on (C×)d contains the same information as

the linear function Λ on the nonlinear set ϕA((C
×)d).
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Toric Compactification II

Recall that Φ =
∑

α∈A bαz
α and

ϕA : (C
×
)
d
∋ z 7−→ [z

α
| α ∈ A] ∈ P

A
.

Definition. The toric variety XA is the closure in P
A of ϕA(C

×)d.

This is compact and has a finite stratification by orbits of (C×)d:

P := convex hull of A(Φ), the Newton polytope of Φ.

Orbits correspond to faces F of P , with

ϕA∩F (C
×)d the orbit for the face F of P .

P

The closure of this orbit is the toric variety XA∩F .

Thus the boundary XA r ϕA(C
×)d of XA is the union of

toric varieties XA∩F for the proper faces F of P .
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Consequences for V(Φ)

Recall Φ =
∑

α∈A bαz
α and Λ =

∑

α∈A bαyα with Φ = Λ ◦ ϕA .

Thus ϕA(V(Φ)) ⊂ XA ∩ V(Λ), and

V(Φ) := XA ∩ V(Λ) is a (tropical) compactification of V(Φ).

The points added at infinity have an elegant description:

For a face F of P = conv(A(Φ)), we have the facial form

Φ|F :=
∑

α∈A∩F

bαz
α
.

Then V(Φ) ∩ XA∩F = ϕA∩F (V(Φ|F )).

P

Ã Links facial forms of Φ to points of V(Φ) at infinity.
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Floquet and Fermi, Really

This applies to Floquet and Fermi varieties, and it underlies Faust’s results.

It also clarifies the structure of these varieties at infinity.

Reality. σ : (C×)d ∋ z 7→ z−1 is a complex structure on (C×)d.

The complex structure σ extends to XA(Φ),

showing it to be an arithmetic toric variety.

As Γ is undirected, L(z)T = L(z−1), so it is Hermitian.

When V, c are real, σΦ(z) = Φ(z−1) = Φ(z).

Thus the Fermi and Floquet varieties are stable under σ,

so that they are real algebraic varieties.

In particular, the real dispersion relation and Fermi surfaces are the real

points of real algebraic varieties.
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Extensions/Future Directions ?

• Realize L as an operator on XA(Φ) (and not just (C×)d).

(This is necessary to complete this project.)

• The toric variety XA(Φ) may be singular.

Seek a desingularization adapted to the Floquet and Fermi varieties.

• Generalize the 1991 “directional compactification” of Bättig, Knörrer,

and Trubowitz to arbitrary complex Fermi hypersurfaces.
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