21 September 2006
Instructor: F. Sottile

Full credit is given only for complete and correct answers.
No aids allowed on the exam. Please write your answers in blue books. Do persevere; partial credit will be given, and you are all good students. Point totals are in brackets next to each problem.

1. (a) [10] Suppose that f is a function and l, a are real numbers. Give the precise $\epsilon-\delta$ definition of limit. That is, give the definition of: "The function f approaches the limit l near a ".
(b) [25] Using this definition of limit, prove that $\lim _{x \rightarrow 5} \sqrt{x}=\sqrt{5}$.
2. [10] Let \mathbf{v} be the vector $\langle-12,5\rangle$.
a) Compute $|\mathbf{v}|$.
b) Compute the dot product $\mathbf{v} \cdot\langle 3,5\rangle$
3. [15] Given that $\lim _{x \rightarrow a} f(x)=-3, \lim _{x \rightarrow a} g(x)=1$, and $\lim _{x \rightarrow a} h(x)=8$, find the following limits that exist.
a) $\lim _{x \rightarrow a}[f(x)+h(x)]$
b) $\lim _{x \rightarrow a} \frac{f(x)}{1-g(x)}$
c) $\lim _{x \rightarrow a}\left(f(x) h(x)-\frac{g(x)}{(h(x))^{2}-20 f(x)}\right)$
4. [10] Suppose that A has been defined as a 4×6 matrix. Write a MATLAB command to create a column vector \mathbf{x} from the second and third rows of A.
5. [15] Evaluate the following limit.

$$
\lim _{x \rightarrow 0} \frac{x}{\sqrt{2}-\sqrt{2+x}}
$$

6. [15] Recall that if f and g are functions, then $f \circ g(x)$ is $f(g(x))$. Suppose that $f(x)=\sqrt{x-1}$ and $g(x)=x^{2}$. Give formulas and the largest domain of definition for $f \circ f, f \circ g, g \circ f$, and $g \circ g$.
