History of Mathematics

Not to be handed in, but should be discussed.

Some additional work on cubics

1. Here is another cubic to solve completely: $x^{3}+2 x+4 i=0$, where $i=\sqrt{-1}$ is the imaginary unit, a square root of -1 . You will find the example on the bottom of page 3 of my notes, as well as the formula $(-i)^{3}=i$ useful for this.
2. Watch the last part of Marcus du Satoy's documentary on the History of Mathematics. Can you find a discrepancy between what he presents and what the book presents about the history of solving the cubic? Please investigate this, seeking sources to corroborate one or the other.
3. Challenge: Can you use methods, described either in the book, or in my notes, to solve the quartic,

$$
x^{4}-10 x^{3}+4 x+8=0 ?
$$

