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Although Casimir, or quantum vacuum, forces between
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been calculated by a variety of different methods since
1948, they have always been plagued by divergences.
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Introduction

Although Casimir, or quantum vacuum, forces between
distinct bodies, or self-stresses of individual bodies, have
been calculated by a variety of different methods since
1948, they have always been plagued by divergences.
Some of these divergences are associated with the volume,
and so may be more or less unambiguously removed,

while other divergences are associated with the surface. The

interpretation of these has been quite controversial. Par-

ticularly mysterious is the contradiction between finite total

self-energies (Bernasconi, Graf, and Hasler) and surface di-

vergences in the local energy density.
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Gluon and quark condensates

Due to zero-point fluctuations, confinement of gluon and
quark fields in the bag model (presumably a first-mock-up
of QCD) will result in a nonzero expectation value for the
squared field strength,

〈G2(r)〉 =
1

4π2a

1

r2

d

dr

∞
∑

l=1

(2l + 1)2

∫ ∞

0
dx eixδ sl(xr/a)s′l(xr/a)

sl(x)s′l(x)
,
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Gluon and quark condensates

Due to zero-point fluctuations, confinement of gluon and
quark fields in the bag model (presumably a first-mock-up
of QCD) will result in a nonzero expectation value for the
squared field strength,

〈G2(r)〉 =
1

4π2a

1

r2

d

dr

∞
∑

l=1

(2l + 1)2

∫ ∞

0
dx eixδ sl(xr/a)s′l(xr/a)

sl(x)s′l(x)
,

Similarly, we obtain the following expression for the quark
condensate

〈q̄q(r)〉 = − 1

4π2ar2

∞
∑

l=0

2(l + 1)

∫ ∞

−∞
dx eixδ s2

l (xr/a) + s2
l+1(xr/a)

s2
l (x) + s2

l+1(x)
.

Here sl and el are modified spherical Bessel functions.
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Condensate Graphs
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Condensate Graphs Captions

Magnitude of the quark and gluon condensates as
functions of the distance from the center of the bag.
The values shown are for a single color, and, for the
quarks, for a single flavor and helicity state.

For further details see K. A. Milton, The Casimir Effect
(World Scientific, 2001).
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Casimir Forces on Spheres

The calculations presented here were carried out in re-

sponse to the program of the MIT group. They rediscovered

irremovable divergences in the Casimir energy for a circle

first discovered by Sen in 1980, but then found divergences

in the case of a spherical surface, thereby casting doubt on

the validity of the Boyer calculation. Some of their results, as

we shall see, are spurious, and the rest had been earlier dis-

covered by the Leipzig group. However, their work has been

valuable in sparking new investigations of the problems of

surface energies and divergences.
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δ-function Potential

We now carry out a calculation of the zero-point energy in
three spatial dimensions, with a radially symmetric singular
background ([λ] = L−1)

Lint = −1

2
λδ(r − a)φ2(x),

which would correspond to a Dirichlet shell in the limit
λ → ∞. The time-Fourier transformed Green’s function
satisfies the equation (κ2 = −ω2)

[

−∇2 + κ2 + λδ(r − a)
]

G(r, r′) = δ(r− r
′).

We write G in terms of a reduced Green’s function

G(r, r′) =
∑

lm

gl(r, r
′)Ylm(Ω)Y ∗

lm(Ω′),
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where gl satisfies
[

− 1

r2

d

dr
r2 d

dr
+

l(l + 1)

r2
+ κ2 + λδ(r − a)

]

gl(r, r
′) =

1

r2
δ(r − r′).

We solve this in terms of modified Bessel functions, Iν(x),
Kν(x), where ν = l + 1/2, which satisfy the Wronskian
condition

I ′ν(x)Kν(x) − K ′
ν(x)Iν(x) =

1

x
.

The solution is obtained by requiring continuity of gl at each

singularity, r′ and a, and the appropriate discontinuity of the

derivative. Inside the sphere we then find (0 < r, r′ < a)
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gl(r, r
′) =

1

κrr′

[

el(κr>)sl(κr<) − λ

κ
e2
l (κa)

sl(κr)sl(κr′)

1 + λ
κsl(κa)el(κa)

]

.

Here we have introduced the modified Riccati-Bessel
functions,

sl(x) =

√

πx

2
Il+1/2(x), el(x) =

√

2x

π
Kl+1/2(x).

Note that this reduces to the expected result, vanishing as
r → a, in the limit of strong coupling:

lim
λ→∞

gl(r, r
′) =

1

κrr′

[

el(κr>)sl(κr<) − el(κa)

sl(κa)
sl(κr)sl(κr′)

]

.
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When both points are outside the sphere, r, r′ > a, we
obtain a similar result:

gl(r, r
′) =

1

κrr′

[

el(κr>)sl(κr<) − λ

κ
s2
l (κa)

el(κr)el(κr′)

1 + λ
κsl(κa)el(κa)

]

.

which similarly reduces to the expected result as λ → ∞.
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Pressure on sphere

Now we want to get the radial-radial component of the
stress tensor to extract the pressure on the sphere, which is
obtained by applying the operator

∂r∂r′ −
1

2
(−∂0∂′0 + ∇ · ∇′) → 1

2

[

∂r∂r′ − κ2 − l(l + 1)

r2

]

to the Green’s function, where in the last term we have
averaged over the surface of the sphere. In this way we
find, from the discontinuity of 〈Trr〉 across the r = a surface,
the net stress

S =
λ

2πa

∞
∑

l=0

(2l + 1)

∫ ∞

0
dx

(el(x)sl(x))′ − 2el(x)sl(x)
x

1 + λael(x)sl(x)
x

.
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The same result can be deduced by computing the total
energy. The free Green’s function, evidently, makes no
significant contribution to the energy, for it gives a term
independent of the radius of the sphere, a, so we omit it.
The remaining radial integrals are simply

∫ x

0
dy s2

l (y) = 1
2x

[(

x2 + l(l + 1)
)

s2
l + xsls

′
l − x2s′2l

]

,

∫ ∞

x
dy e2

l (y) = − 1
2x

[(

x2 + l(l + 1)
)

e2
l + xele

′
l − x2e′2l

]

,

where all the Bessel functions on the right-hand-sides of

these equations are evaluated at x. Then using the Wron-

skian, we find that the Casimir energy is
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E = − 1

2πa

∞
∑

l=0

(2l + 1)

∫ ∞

0
dx x

d

dx
ln [1 + λaIν(x)Kν(x)] .

If we differentiate with respect to a, with λ fixed, we immedi-

ately recover the force. This expression, upon integration by

parts, coincides with that given recently by Barton, and was

first analyzed in detail by Scandurra.
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Strong coupling

For strong coupling, the above energy reduces to the
well-known expression for the Casimir energy of a massless
scalar field inside and outside a sphere upon which
Dirichlet boundary conditions are imposed, that is, that the
field must vanish at r = a:

lim
λ→∞

E = − 1

2πa

∞
∑

l=0

(2l + 1)

∫ ∞

0
dx x

d

dx
ln [Iν(x)Kν(x)] ,

(ν = l + 1/2) because multiplying the argument of the log-

arithm by a power of x is without effect, corresponding to a

contact term.
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Boyer Coefficients

This may be evaluated numerically:

ETE =
0.002817

a
,

which is much smaller than the Boyer result for
electrodynamics:

EEM =
0.04618

a
,

although both are repulsive.
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Weak coupling

The opposite limit is of interest here. The expansion of the
logarithm is immediate for small λ. The first term, of order
λ, is evidently divergent, but irrelevant, since that may be
removed by renormalization of the tadpole graph. In
contradistinction to the claim of of the MIT group the order
λ2 term is finite. That term is

E(λ2) =
λ2a

4π

∞
∑

l=0

(2l + 1)

∫ ∞

0
dx x

d

dx
[Il+1/2(x)Kl+1/2(x)]2.

The sum on l can be carried out using a trick due to Klich:
The sum rule

∞
∑

l=0

(2l + 1)el(x)sl(y)Pl(cos θ) =
xy

ρ
e−ρ,
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where ρ =
√

x2 + y2 − 2xy cos θ, is squared, and then
integrated over θ, according to

∫ 1

−1
d(cos θ)Pl(cos θ)Pl′(cos θ) = δll′

2

2l + 1
.

In this way we learn that

∞
∑

l=0

(2l + 1)e2
l (x)s2

l (x) =
x2

2

∫ 4x

0

dw

w
e−w.
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Although this integral is divergent, because we did not
integrate by parts, that divergence does not contribute:

E(λ2) =
λ2a

4π

∫ ∞

0
dx

1

2
x

d

dx

∫ 4x

0

dw

w
e−w =

λ2a

32π
,

which is exactly the result I had found earlier, based on the
following formula for a hypersphere in D dimensions:

E
(λ2)
D = −λ2a

π

Γ
(

D−1
2

)

Γ(D − 3/2)Γ(1 − D/2)

21+2D[Γ(D/2)]2
.

which exhibits poles when D is even, where the Casimir en-

ergy is known to diverge.
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Divergences

However, before we wax too euphoric, we recognize that
the order λ3 term appears logarithmically divergent, just as
the MIT group claimed. Suppose we subtract off the two
leading terms,

E = − 1

2πa

∞
∑

l=0

(2l + 1)

∫ ∞

0
dx x

d

dx

[

ln (1 + λaIνKν) − λaIνKν

+
λ2a2

2
(IνKν)

2

]

+
λ2a

32π
.

To study the behavior of the sum for large values of l, we can

use the uniform asymptotic expansion (Debye expansion),
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ν ≫ 1 : Iν(x)Kν(x) ∼ t

2ν

[

1 +
A(t)

ν2
+

B(t)

ν4
+ . . .

]

.

Here x = νz, and t = 1/
√

1 + z2. The functions A and B,
etc., are polynomials in t. We now insert this into the energy
expression and expand not in λ but in ν; the leading term is

E(λ3) ∼ λ3a2

24π

∞
∑

l=0

1

ν

∫ ∞

0

dz

(1 + z2)3/2
=

λ3a2

24π
ζ(1).
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Although the frequency integral is finite, the angular
momentum sum is divergent. The appearance here of the
divergent ζ(1) seems to signal an insuperable barrier to
extraction of a finite Casimir energy for finite λ. The
situation is different in the limit λ → ∞.

This divergence has been known for many years, and
was first calculated explicitly in 1998 by Bordag et al.,
where the second heat kernel coefficient gave

E ∼ λ3a2

48π

1

s
, s → 0.
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A possible way of dealing with this divergence was advo-

cated in Scandurra. Very recently, Bordag and Vassilevich

have reanalyzed such problems from the heat kernel ap-

proach. They show that this O(λ3) divergence corresponds

to a surface tension counterterm, an idea proposed by me

in 1980 in connection with the zero-point energy contribu-

tion to the bag model. Such a surface term corresponds to

λ fixed, which then necessarily implies a divergence of order

λ3. Bordag argues that it is perfectly appropriate to render

this divergence finite by renormalization.
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Boundary layer energy

Here we show that the surface energy can be interpreted as
the bulk energy of the boundary layer. We do this by
considering a scalar field in d + 1 + 1 dimensions interacting
with the background

Lint = −λ

2
φ2σ,

where

σ(x) =

{

h, − δ
2 < x < δ

2 ,

0, otherwise,

with the property that hδ = 1.
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Reduced Green’s Function

The reduced Green’s function satisfies
[

− ∂2

∂x2
+ κ2 + λσ(x)

]

g(x, x′) = δ(x − x′).

This may be easily solved in the region of the slab,
− δ

2 < x < δ
2 , (κ′ =

√
κ2 + λh)

g(x, x′) =
1

2κ′

{

e−κ′|x−x′| +
1

∆̂

[

(κ′2 − κ2) coshκ′(x + x′)

+ (κ′ − κ)2e−κ′δ cosh κ′(x − x′)

]}

,

∆̂ = 2κκ′ cosh κ′δ + (κ2 + κ′2) sinh κ′δ.
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Local Energy Density

Consider the stress tensor with an arbitrary conformal term,

Tµν = ∂µφ∂νφ − 1

2
gµν(∂λφ∂λφ + λhφ2) − α(∂µ∂ν − gµν∂2)φ2.

We get the following form for the energy density within the
slab, [〈φ(r)φ(r′)〉 = −iG(r, r′)]

T 00 =
2−d−2π−(d+1)/2

Γ((d + 3)/2)

∫ ∞

0

dκκd

κ′∆̂

{

(κ′2 − κ2)

×
[

(1 − 4α)(1 + d)κ′2 − κ2
]

cosh 2κ′x

− (κ′ − κ)2e−κ′δκ2

}

.

Semivac Conference, TAMU – p.25/51



13 January 2005

From this we can calculate the behavior of the energy
density as the boundary is approached from the inside:

T 00 ∼ Γ(d + 1)λh

2d+4π(d+1)/2Γ((d + 3)/2)

1 − 4α(d + 1)/d

(δ − 2|x|)d , |x| → δ/2.

For d = 2 for example, this agrees with the result found by
Graham and Olum for α = 0:

T 00 ∼ λh

96π2

(1 − 6α)

(δ/2 − |x|)d , |x| → δ

2
.

Note that, as we expect, this surface divergence vanishes

for the conformal stress tensor, where α = d/4(d+1). (There

will be subleading divergences if d > 2.)
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We can also calculate the energy density on the other side
of the boundary, from the Green’s function for x, x′ < −δ/2,

g(x, x′) =
1

2κ

[

e−κ|x−x′| − eκ(x+x′+δ)(κ′2 − κ2)
sinh κ′δ

∆̂

]

,

and the corresponding energy density is given by

T 00 = − d(1 − 4α(d + 1)/d)

2d+2π(d+1)/2Γ((d + 3)/2)

∫ ∞

0
dκκd+1 1

∆̂
(κ′2 − κ2)

×e2κ(x+δ/2) sinh κ′δ,

which vanishes if the conformal value of α is used.
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The divergent term, as x → −δ/2, is just the negative of that
found on the inside. This is why, when the total energy is
computed by integrating the energy density, it is finite for
d < 2, and independent of α. The divergence encountered
for d = 2 may be handled by renormalization of the
interaction potential. In the limit as h → ∞, hδ = 1, we
recover the divergent expression for a single interface

lim
h→∞

Es =
1

2d+2π(d+1)/2Γ((d + 3)/2)

∫ ∞

0
dκκd λ

λ + 2κ
.

Therefore, surface divergences have an illusory character.
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TM Spherical Potential

Of course, the scalar model considered in the above is
merely a toy model, and something analogous to
electrodynamics is of far more physical relevance. There
are good reasons for believing that cancellations occur in
general between TE (Dirichlet) and TM (Robin) modes.
Certainly they do occur in the classic Boyer energy of a
perfectly conducting spherical shell, and the indications are
that such cancellations occur even with imperfect boundary
conditions – See Barton. Following the latter reference, let
us consider the potential

Lint =
1

2
λ

1

r

∂

∂r
δ(r − a)φ2(x).

In the limit λ → ∞ this corresponds to TM BCs.
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It is then easy to find the Green’s function. When both
points are inside the sphere, r, r′ < a:

gl(r, r
′) =

1

κrr′

[

sl(κr<)el(κr>) − λκ[e′l(κa)]2sl(κr)sl(κr′)

1 + λκe′l(κa)s′l(κa)

]

,

and when both points are outside the sphere, r, r′ > a:

gl(r, r
′) =

1

κrr′

[

sl(κr<)el(κr>) − λκ[s′l(κa)]2el(κr)el(κr′)

1 + λκe′l(κa)s′l(κa)

]

.
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The Casimir energy may be readily obtained:

E = − 1

2πa

∞
∑

l=0

(2l + 1)

∫ ∞

0
dx x

d

dx
ln

[

1 +
λ

a
xe′l(x)s′l(x)

]

.

In the limit λ → ∞ the sum of the TE and TM energies
reduces to the familiar expression for the perfectly
conducting spherical shell (omitting the l = 0 mode):

lim
λ→∞

E = − 1

2πa

∞
∑

l=1

(2l + 1)

∫ ∞

0
dx x

(

e′l
el

+
e′′l
e′l

+
s′l
sl

+
s′′l
s′l

)

,

of which we gave the evaluation above.
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Surface energy ofλ sphere

I am currently extending the calculation given for plane
surfaces to that of a finite spherical annulus. The
preliminary results are quite encouraging. Again we
consider the potential

Lint = −λ

2
φ2σ(r),

where

σ(r) =











0, r < a−,

h, a− < r < a+,

0, a+ < r.

Here a± = a±δ/2, and we set hδ = 1. In the limit as δ → 0 (or

h → ∞) we recover the δ-function sphere considered above.
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Green’s function for λ sphere

A straightforward solution of the Green’s function equation
(

−∇2 + κ2 + λσ
)

G(r, r′) = δ(r− r
′)

in terms of the reduced Green’s function

G(r, r′) =
∑

lm

gl(r, r
′)Ylm(θ, φ)Y ∗

lm(θ′, φ′)

is as follows:

r, r′ < a− : gl =
1

κrr′

[

sl(κr<)el(κr>) − Ξ̃

Ξ
sl(κr)sl(κr′)

]

,

r, r′ > a− : gl =
1

κrr′

[

sl(κr<)el(κr>) − Ξ̂

Ξ
el(κr)el(κr′)

]

,
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where

Ξ = [κs′l(κa−)el(κ
′a−) − κ′sl(κa−)e′l(κ

′a−)]

×[κ′el(κa+)s′l(κ
′a+) − κe′l(κa+)sl(κ

′a+)]

− [κs′l(κa−)sl(κ
′a−) − κ′sl(κa−)s′l(κ

′a−)]

×[κ′el(κa+)e′l(κ
′a+) − κe′l(κa+)el(κ

′a+)].
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where

Ξ = [κs′l(κa−)el(κ
′a−) − κ′sl(κa−)e′l(κ

′a−)]

×[κ′el(κa+)s′l(κ
′a+) − κe′l(κa+)sl(κ

′a+)]

− [κs′l(κa−)sl(κ
′a−) − κ′sl(κa−)s′l(κ

′a−)]

×[κ′el(κa+)e′l(κ
′a+) − κe′l(κa+)el(κ

′a+)].

Ξ̃ is obtained from Ξ by replacing sl(κa−) → el(κa−),
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where

Ξ = [κs′l(κa−)el(κ
′a−) − κ′sl(κa−)e′l(κ

′a−)]

×[κ′el(κa+)s′l(κ
′a+) − κe′l(κa+)sl(κ

′a+)]

− [κs′l(κa−)sl(κ
′a−) − κ′sl(κa−)s′l(κ

′a−)]

×[κ′el(κa+)e′l(κ
′a+) − κe′l(κa+)el(κ

′a+)].

Ξ̃ is obtained from Ξ by replacing sl(κa−) → el(κa−), while

Ξ̂ is obtained from Ξ by replacing el(κa+) → sl(κa+). Here

κ′ =
√

κ2 + λh.
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Green’s function in annulus

gl =
1

κrr′

{

sl(κ
′r<)el(κ

′r>)

− 1

Ξ

[

[sl(κ
′r)el(κ

′r′) + sl(κ
′r′)el(κ

′r)]

×[κe′l(κa+)el(κ
′a+) − κ′el(κa+)e′l(κ

′a+)]

×[κs′l(κa−)sl(κ
′a−) − κ′sl(κa−)s′l(κ

′a−)]

− sl(κ
′r′)sl(κ

′r)[κe′l(κa+)el(κ
′a+) − κ′el(κa+)el(κ

′a+)]

×[κs′l(κa−)el(κ
′a−) − κ′sl(κa−)e′l(κ

′a−)]

− el(κ
′r′)el(κ

′r)[κe′l(κa+)sl(κ
′a+) − κ′el(κa+)sl(κ

′a+)]

×[κs′l(κa−)sl(κ
′a−) − κ′sl(κa−)s′l(κ

′a−)]

]}
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Surface Divergences

We can calculate the local energy density from the stress
tensor:

T 00 =
1

2

[

∂0φ∂0φ + ∇φ · ∇φ + λσφ2
]

− α∇2φ2

where the conformal value is α = 1/6. In the thin-shell limit

Ξ̂

Ξ
→

λ
κs2

l (κa)

1 + λ
κel(κa)sl(κa)

,

we obtain using the UAE an approximate expression for the
Green’s function at coincident points: (r > a)

G(r, r) ∼ − i

8π2r2

∫ ∞

0
dz t

∞
∑

l=0

νe−2ν[η(z)−η(za/r)]

1 + 2ν/λat(za/r)
.
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For λ → ∞, the l sum gives

G(r, r′) =
i

32π2r2

∫ ∞

0
dz t

coth[η(z) − η[za/r)]

sin[η(z) − η(za/r)]
,

η(z) =
√

1 + z2 + log
z

1 +
√

1 + z2
, t = (1 + z2)−1/2.

As r → a, is it easy to show (λ → ∞)

G(r, r) ∼ − i

32π2

1

(r − a)2
.

A similar argument shows that the energy density has the

expected (r − a)−4 divergence.
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Annulus energy

In the limit of h → ∞ for the region of the annulus,
a− < r, r′ < a+,

gl → − 1

2κrr′
el(κa)sl(κa)

1 + λ
κel(κa)sl(κa)

[

cosh
√

λh(r − r′)

− cosh
√

λh(r + r′ − a+ − a−)

]

.

In the thin shell limit this leads to a nearly constant energy
density in the annulus (δ → 0)

〈t00〉 = −iλh(1 − 4α)
1

2κa2

el(κa)sl(κa)

1 + λ
κel(κa)sl(κa)

.
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So for the conformal value α = 1/6 we obtain the following
annulus energy

EA =
λ

6π

∞
∑

l=0

(2l + 1)

∫ ∞

0
dx

Il+1/2(x)Kl+1/2(x)

1 + λaIl+1/2(x)Kl+1/2(x)
.

If this is expanded to order λ3 we identify the
corresponding term in the δ-potential Casimir energy as the
surface energy!

EC =
1

2πa

∞
∑

l=0

(2l + 1)

∫ ∞

0
log

(

1 + λaIl+1/2(x)Kl+1/2

)

.

Thus,
EC − EA = finite.
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Dielectric Spheres

The Casimir self-stress on a uniform dielectric sphere was
first worked out by me in 1979. It was generalized to the
case when both electric permittivity and magnetic
permeability are present in 1997. The result for the
pressure, (x =

√
εµ|y|, x′ =

√
ε′µ′|y| where ε′, µ′ are the

interior, and ε, µ are the exterior, values of the permittivity
and the permeability)

P = − 1

2a4

∫ ∞

−∞

dy

2π
eiyδ

∞
∑

l=1

2l + 1

4π

{

x
d

dx
ln Dl

+ 2x′[s′l(x
′)e′l(x

′) − el(x
′)s′′l (x

′)] − 2x[s′l(x)e′l(x) − el(x)s′′l (x)]

}
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where the “bulk” pressure has been subtracted, and

Dl = [sl(x
′)e′l(x) − s′l(x

′)el(x)]2 − ξ2[sl(x
′)e′l(x) + s′l(x

′)el(x)]2,

with the parameter ξ being

ξ =

√

ε′

ǫ
µ
µ′ − 1

√

ǫ′

ǫ
µ
µ′ + 1

,

and δ is the temporal regulator. This result is obtained ei-

ther by computing the radial-radial component of the stress

tensor, or from the total energy.
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In general, this result is divergent. However, consider the
special case

√
ǫµ =

√
ǫ′µ′, that is, when the speed of light is

the same in both media. Then x = x′ and the Casimir
energy reduces to

E = − 1

4πa

∫ ∞

−∞
dy eiyδ

∞
∑

l=1

(2l + 1)x
d

dx
ln[1 − ξ2((slel)

′)2],

where

ξ =
µ − µ′

µ + µ′
= −ε − ε′

ε + ε′
.

If ξ = 1 we recover the case of a perfectly conducting spher-

ical shell, treated above. In fact E is finite for all ξ.
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Dilute Limit

Of particular interest is the dilute limit, where

E ≈ 5ξ2

32πa
=

0.099 4718ξ2

2a
, ξ ≪ 1.

It is remarkable that the value for a spherical conducting

shell, for which ξ = 1, is only 7% lower, which as Klich re-

marks, is accounted for nearly entirely by the next term in

the small ξ expansion.
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There is another dilute limit which is also quite surprising.
For a purely dielectric sphere (µ = 1) the leading term in an
expansion in powers of ε − 1 is finite:

E =
23

1536π

(ε − 1)2

a
= (ε − 1)2

0.004 767

a
. (-15)

This result coincides with the sum of van der Waals
energies of the material making up the ball as Ng and I
showed in 1998. The term of order (ε − 1)3 is divergent.
The establishment of this result was the death knell for the
Casimir energy explanation of sonoluminescence.
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Dielectric Cylinders

The fundamental difficulty in cylindrical geometries is that
there is in general no decoupling between TE and TM
modes. Progress in understanding has therefore been
much slower in this regime. It was only in 1981 that it was
found that the electromagnetic Casimir energy of a perfectly
conducting cylinder was attractive, the energy per unit
length being

Eem,cyl = −0.01356

a2
,

for a circular cylinder of radius a. The corresponding result
for a scalar field satisfying Dirichlet boundary conditions of
the cylinder is repulsive,

ED,cyl =
0.000606

a2
.
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These ideal limits are finite, but, as with the spherical ge-

ometry, less ideal configurations have unremovable diver-

gences. For example, a cylindrical δ-shell potential, as de-

scribed earlier, has divergences (in third order). And it is ex-

pected that a dielectric cylinder will have a divergent Casimir

energy, although the coefficient of (ε − 1)2 will be finite for

a dilute dielectric cylinder, corresponding to a finite van der

Waals energy between the molecules that make up the ma-

terial.
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Casimir Energy of Dilute Cylinder

In fact, a calculation of the renormalized van der Waals
energy for a dilute dielectric cylinder is zero, as is the
Casimir energy for a cylinder for which the speed of light is
the same inside and out, because εµ = 1.
I have just completed a calculation of the Casimir energy for
a dielectric cylinder with my graduate student Ines
Cavero-Pelaez (hep-th/0412135). The order (ε − 1)2 term in
the pressure is given by the expression

P =
(ε − 1)2

16π2a4

∞
∑

m=0

′

∫ ∞

0
dy y4gm(y),
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where gm is given by a rather complicated expression
involving four modified Bessel functions (from which is
subtracted the expression corresponding to the bulk
contribution, if either the dielectric, or vacuum, filled all
space, involving two Bessel functions). This expression, in
fact may be straightforwardly evaluated numerically using
uniform asymptotic expansions, with the unsurprising but
still remarkable result

P = 0 + O((ε − 1)3).

The same result is obtained by an analytic continuation tech-

nique. [See also Romeo, paper in preparation.]
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Conclusions

We began by recalling old results for the surface energy
divergences.
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Conclusions

We began by recalling old results for the surface energy
divergences.

We discussed δ-function potentials, which in general
give divergent results in 3rd order, but are finite in
strong coupling.
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Conclusions

We began by recalling old results for the surface energy
divergences.

We discussed δ-function potentials, which in general
give divergent results in 3rd order, but are finite in
strong coupling.

These divergences are largely identified with surface
energies, which can be interpreted as bulk energies
when the boundaries are smoothed.
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Conclusions

We began by recalling old results for the surface energy
divergences.

We discussed δ-function potentials, which in general
give divergent results in 3rd order, but are finite in
strong coupling.

These divergences are largely identified with surface
energies, which can be interpreted as bulk energies
when the boundaries are smoothed.

Precisely analogous phenomena happen for dielectric
balls and cylinders (although there is some remarkable
symmetry buried in the latter).
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