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Regular One-dimensional Sturm-Liouville Problems

Let I = [0, 1] ⊂ R, and let L be the following symmetric second order
differential operator

L = − d

dx

(
p(x)

d

dx

)
+ V (x) ,

with p(x) > 0 for x ∈ I, and p(x) and V (x) in L 1(I,R). For the differential
operator L we consider the differential equation

Lϕλ = λ2ϕλ , (1)

where λ ∈ C and ϕλ ∈ C2(I).
The differential equation (1) endowed with self-adjoint boundary conditions
imposed on ϕλ is called a regular Sturm-Liouville problem. Furthermore,
the parameter λ ∈ R denotes the eigenvalues of the SL problem.
Self-adjoint boundary conditions can be divided in two mutually excluding
classes:

• Separated Boundary Conditions

• Coupled boundary conditions.



Separated Boundary Conditions
Separated boundary conditions have the following general form

A1ϕλ(0)−A2p(0)ϕ′λ(0) = 0 ,

B1ϕλ(1) +B2p(1)ϕ′λ(1) = 0 ,

with A1, A2, B1, B2 ∈ R and (A1, A2) 6= (0, 0), and (B1, B2) 6= (0, 0).
Eigenvalues. For each λ we choose a solution ϕλ satisfying the initial
conditions

ϕλ(0) = A2 , and p(0)ϕ′λ(0) = A1 .

The eigenfunctions of the Sturm-Liouville problem are, then, those that
also satisfy the condition

Ω(λ) = B1ϕλ(1) +B2p(1)ϕ′λ(1) = 0 ,

which represents an implicit equation for the eigenvalues λ.
Remarks: Well-known examples

• For A1 = B1 = 0 and A2 = B2 = 0 we get Neuman and Dirichlet
boundary conditions, respectively.

• When A1 = B1 and A2 = −B2 we have Robin Boundary conditions.

• By setting A1 = B2 = 0 or A2 = B1 = 0 we obtain mixed or hybrid
boundary conditions.



Coupled Boundary Conditions
Coupled boundary conditions can be expressed in general as(

ϕλ(1)
p(1)ϕ′λ(1)

)
= eiγK

(
ϕλ(0)

p(0)ϕ′λ(0)

)
,

where −π < γ ≤ 0 or 0 ≤ γ < π and K ∈ SL2(R). For γ = 0 and K = I2 we
have periodic boundary conditions.
Eigenvalues. We write the solution as

ϕλ(x) = αuλ(x) + βvλ(x) ,

where for each λ, uλ(x) and vλ(x) are defined by the initial conditions

ϕλ(0) = β and p(0)ϕ′λ(0) = α .

By imposing coupled boundary conditions and by denoting [kij ] = K we
obtain the linear system

α
[
uλ(1)− eiγk12

]
+ β

[
vλ(1)− eiγk11

]
= 0

α
[
p(1)u′λ(1)− eiγk22

]
+ β

[
p(1)v′λ(1)− eiγk21

]
= 0 ,

which has a non-trivial solution if and only if

∆(λ) = 2 cos γ −
[
k22vλ(1)− k12uλ(1) + k11p(1)u′λ(1)− k12p(1)v′λ(1)

]
= 0 .



Spectral Zeta Function

The implicit equations for the eigenvalues provide an integral
representation of the spectral zeta function valid for <(s) > 1/2 as

ζ{
S
C}(s) =

1

2πi

∫
C{

S
C}

dλλ−2s ∂

∂λ
ln

{
Ω(λ)

∆(λ)

}
.

By deforming the contour to the imaginary axis and by changing variables
iλ→ z one obtains the representation

ζ{
S
C}(s) =

sinπs

π

∫ ∞
0

dzz−2s ∂

∂z
ln

{
Ω(z)

∆(z)

}
,

valid for 1/2 < <(s) < 1.
To perform the analytic continuation to the left of the strip 1/2 < <(s) < 1
we subtract and add from the integrand a suitable number of terms from
the asymptotic expansion of ln Ω(z) and ln ∆(z) for z →∞.
The desired asymptotic expansion is obtained through a WKB analysis of
the solutions of Sturm-Liouville problem.
Remark:

• For a general one-dimensional Sturm-Liouville differential operator
with general self-adjoint boundary conditions, Ω(z) and ∆(z) are not
known explicitly.



WKB Expansion

In the parameter z, the Sturm-Liouville differential equation reads[
− d

dx

(
p(x)

d

dx

)
+ V (x)

]
ϕz(x) = −z2ϕz(x) .

By introducing the auxiliary function

S(x, z) =
∂

∂x
lnϕz(x) ,

the equation above is equivalent to the following

[p(x)S(x, z)]′ = V (x) + z2 − p(x)S2(x, z) .

As z →∞ we assume that S(x, z) has the asymptotic expansion

S(x, z) ∼ zS−1(x) + S0(x) +

∞∑
i=1

Si(x)

zi
.

Once the asymptotic expansion of S(x, z) is known, the one for the solution
ϕz(x) will immediately follow.



WKB Expansion

By substituting the asymptotic form of S(x, z) in the previous non-linear
differential equation we obtain

S±−1(x) = ± 1√
p(x)

, S±0 (x) = −1

2

d

dx
ln
(
p(x)S±−1(x)

)
= − p

′(x)

4p(x)
,

S±1 (x) =
1

2p(x)S±−1(x)

[
V (x)− p(x)

(
S±0
)2

(x)−
(
p(x)S±0 (x)

)′]
,

and for i ≥ 1

S±i+1(x) = − 1

2p(x)S±−1(x)

[(
p(x)S±i (x)

)′
+ p(x)

i∑
m=0

S±m(x)S±i−m(x)

]
.

The terms S+
i (x) and S−i (x) provide the exponentially growing and

decaying parts of the solution ϕz(x) as

ϕz(x) = A exp

{∫ x

0

S+(t, z)dt

}
+B exp

{∫ x

0

S−(t, z)dt

}
,

with A and B uniquely determined by the initial conditions.



Asymptotic Expansion: Separated Boundary Conditions

For separated boundary conditions the implicit equation for the eigenvalues
is

ln Ω(z) ∼ ln
[
−A2p(0)S−(0, z) +A1

]
+ ln

[
B2p(1)S+(1, z) +B1

]
− ln

[
p(0)

(
S+(0, z)− S−(0, z)

)]
+

∫ 1

0

S+(t, z)dt .

By introducing the function δ(x) = 1 for x = 0, and δ(x) = 0 for x 6= 0 one
can further expand ln Ω(z) to obtain

ln Ω(z) = −1

4
ln p(0)p(1) + [1− δ(A2)] lnA2

√
p(0) + [1− δ(B2)] lnB2

√
p(1)

+ δ(A2) lnA1 + δ(B2) lnB1 − ln 2z + [2− δ(A2)− δ(B2)] ln z

+ z

∫ 1

0

S+
−1(t)dt+

∞∑
i=1

Mi

zi
.

Remark:

• The terms Mi, i ≥ 1, are expressed only in terms of p(n)(x) and
V (n)(x) with n ≤ i+ 1 and their powers.



Asymptotic Expansion: Coupled Boundary Conditions

For coupled boundary conditions the implicit equation for the eigenvalues is

ln ∆(z) ∼ − ln
[
p(0)

(
S+(0, z)− S−(0, z)

)]
+

∫ 1

0

S+(t, z)dt

+ ln
[
−k21 − k22p(0)S−(0, z) + k11p(1)S+(1, z) + k12p(1)p(0)S−(0, z)S+(1, z)

]
,

The large-z asymptotic behavior depends on whether k12 vanishes or not.
Both cases are described by the expression

ln ∆(z) = −1

4
ln p(0)p(1) + [1− δ(k12)] ln k12

√
p(0)p(1)

+ δ(k12) ln
(
k22
√
p(0) + k11

√
p(1)

)
+ [2− δ(k12)] ln z − ln 2z + z

∫ 1

0

S+
−1(t)dt+

∞∑
i=1

Ni
zi

.

Remark:

• The terms Ni, i ≥ 1, are expressed only in terms of p(n)(x) and V (n)(x)
with n ≤ i+ 1 and their powers.



Analytic Continuation of the Spectral Zeta Function

From the integral representation of ζ{
S
C}(s) we add and subtract L leading

terms of the respective asymptotic expansions to obtain

ζ{
S
C}(s) = Z{

S
C}(s) +

L∑
i=−1

A
{ S

C}
i (s) ,

with Z{
S
C}(s) an analytic function for <s > −(L+ 1)/2, and A

{ S
C}

i (s)
meromorphic functions for s ∈ C. In particular we have

ζS(s) = ZS(s)+
sinπs

π

[
1− δ(A2)− δ(B2)

2s
+

1

2s− 1

∫ 1

0

S+
−1(t)dt−

L∑
i=1

i
Mi

2s+ i

]
,

ζC(s) = ZC(s) +
sinπs

π

[
1− δ(k12)

2s
+

1

2s− 1

∫ 1

0

S+
−1(t)dt−

L∑
i=1

i
Ni

2s+ i

]
.

Remarks:

• ζS(s) and ζC(s) are meromorphic functions of s ∈ C with only a simple
pole at s = 1/2.



Functional Determinant and Heat Kernel Coefficients

From the analytically continued expression of the spectral zeta function one
can compute

• The functional determinant, det(L) = exp{−ζ′(0)}.
• The coefficients of the asymptotic expansion of θ(t) = TrL 2e−tL.

For the HKC, by using the Mellin transform one has

a 1
2
−s = Γ(s)Res ζ(s) , a 1

2
+n =

(−1)n

n!
ζ(−n) .

when s = 1/2 and s = −(2n+ 1)/2 with n ∈ N0. In our case we have

aS0 = aC0 =
1

2
√
π

∫ 1

0

dt√
p(t)

,

aS1
2

=
1− δ(A2)− δ(B2)

2
, aS2m+1

2
= − 1

(m− 1)!
M2m , aSn+1 = − 22nn!√

π(2n)!
M2n+1 ,

aC1
2

=
1− δ(k12)

2
, aC2m+1

2
= − 1

(m− 1)!
N2m , aCn+1 = − 22nn!√

π(2n)!
N2n+1 ,

with m ∈ N+ and n ∈ N0.



Further Research

The analysis outlined above represents the foundation for further research

• Analysis of the Casimir energy and force for a one-dimensional piston
modeled by a compact potential with separated or coupled boundary
conditions. Study of the behavior of the force as the boundary
conditions change.

• Generalize the technique presented here to study spectral functions for
Laplace operator on manifolds of the type I ×N or I ×f N with N
being a compact Riemannian manifold, and I = [a, b] ⊂ R. These
results could be applied to the analysis of the Casimir effect for
potential pistons with arbitrary cross-section.

• It would be particularly interesting to develop a method similar to the
one presented in this paper to obtain the analytic continuation of the
spectral zeta function for one-dimensional singular Sturm-Liouville
problems:

• The functions p(x) and V (x) become unbounded in the neighborhood of
the endpoints of I.

• The interval I = R is unbounded and the potential V (x)→ +∞, as
|x| → ∞, is confining.


