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Regular One-dimensional Sturm-Liouville Problems

Let I =[0,1] C R, and let £ be the following symmetric second order
differential operator

c= i (sorgh ) v,

with p(z) > 0 for z € I, and p(z) and V(z) in .£*(I,R). For the differential
operator £ we consider the differential equation

Lox=Npx, (1)

where A € C and ¢y € C*(I).

The differential equation (1) endowed with self-adjoint boundary conditions
imposed on ¢, is called a regular Sturm-Liouville problem. Furthermore,
the parameter A € R denotes the eigenvalues of the SL problem.
Self-adjoint boundary conditions can be divided in two mutually excluding
classes:

e Separated Boundary Conditions

e (Coupled boundary conditions.



Separated Boundary Conditions
Separated boundary conditions have the following general form

A1px(0) — A2p(0)pr(0) = 0,
Bipa(1) + Bap(1)pi (1) = 0,
with A1, As, B1, B2 € R and (41, A2) # (0,0), and (B1, B2) # (0,0).

. For each A we choose a solution ¢, satisfying the initial
conditions

@x(0) = A2, and  p(0)pr(0) = A: .

The eigenfunctions of the Sturm-Liouville problem are, then, those that
also satisfy the condition

Q) = Bipa(1) + Bap(1)pa(1) = 0,
which represents an implicit equation for the eigenvalues .

: Well-known examples

e For A; = B; =0 and Az = By = 0 we get Neuman and Dirichlet
boundary conditions, respectively.

e When A; = B; and A2 = — B> we have Robin Boundary conditions.

e By setting A1 = Bs =0 or A2 = B; = 0 we obtain mixed or hybrid
boundary conditions.



Coupled Boundary Conditions

Coupled boundary conditions can be expressed in general as

i) =% (o)

where —m <y <0or 0 <+ <7 and K € SLy(R). For vy =0 and K = I> we
have periodic boundary conditions.
. We write the solution as

ea(z) = aur(x) + foa(z) ,
where for each A, ux(z) and vy (z) are defined by the initial conditions
ex(0) =4 and p(0)pr(0) =a .

By imposing coupled boundary conditions and by denoting [k;;] = K we
obtain the linear system

« [ux(l) - ei’yk12i| + 8 [Ux(l) — emku} = 0
o [p(l)“&(l) - €mk22] +8 [p(l)vg\(l) - emkzl] = 0,
which has a non-trivial solution if and only if

A()\) = 2COS’}/ — [kggv)\(l) — klzu)\(l) + kllp(l)u;(l) — kmp(l)’();\(l)] =0.



Spectral Zeta Function

The implicit equations for the eigenvalues provide an integral
representation of the spectral zeta function valid for R(s) > 1/2 as

0= g [y W g A0

By deforming the contour to the imaginary axis and by changing variables
i\ — z one obtains the representation

-2 [ B3]

valid for 1/2 < R(s) < 1

To perform the analytic continuation to the left of the strip 1/2 < R(s) < 1
we subtract and add from the integrand a suitable number of terms from
the asymptotic expansion of In(z) and In A(z) for z — co.

The desired asymptotic expansion is obtained through a WKB analysis of
the solutions of Sturm-Liouville problem.

e For a general one-dimensional Sturm-Liouville differential operator
with general self-adjoint boundary conditions, Q(z) and A(z) are not
known explicitly.



WKB Expansion

In the parameter z, the Sturm-Liouville differential equation reads

By introducing the auxiliary function

1o}
S(z,2) = %lmpz(:c) ,

the equation above is equivalent to the following

[p(2)S(x,2)] = V() + 2% = p(2)S*(, 2) -
As z — oo we assume that S(z, z) has the asymptotic expansion

]

S(z,2) ~ 25_1(x) + So(x

Once the asymptotic expansion of S(z, z) is known, the one for the solution
¢z (z) will immediately follow.



WKB Expansion

By substituting the asymptotic form of S(z, z) in the previous non-linear
differential equation we obtain

A=t S =5 psh@) = -
SEE) = g [V@ @ (57 @) - (@5 @)]
and for ¢ > 1
1 +
Si(x) = T 2p(@)5E (@) [( (x)S; () ZS )] :

The terms S;t (x) and S; () provide the exponentially growing and
decaying parts of the solution ¢.(x) as

0. (z) = Aexp{/om $+(t,z)dt} + Bexp{/ol $*(t,z)dt} ,

with A and B uniquely determined by the initial conditions.



Asymptotic Expansion: Separated Boundary Conditions

For separated boundary conditions the implicit equation for the eigenvalues
is

InQ(z) ~ In[—A2p(0)S™(0,2) + A1] +In [ng(1)8+(1, z) + B
— In[p(0) (8*(0,2) —S7(0,2))] + /0 ST(t,z)dt

By introducing the function §(z) =1 for z = 0, and §(x) = 0 for z # 0 one
can further expand In Q(z) to obtain

mOz) = —ilnp()() 4 (1= 5(A)] In Asy/p(0) + [1 — 8(B2)] In Bar/p(1)

5(A2)1HA1 + 6(32)11131 — 11122: + [2 — (5(142) — 5(32)] an

1 oo )
z/ Sfl(t)dtJrZ'AZ/:’ .
0 i=1

+ o+

e The terms M;, i > 1, are expressed only in terms of p(")(ac) and
V™ () with n < i+ 1 and their powers.



Asymptotic Expansion: Coupled Boundary Conditions

For coupled boundary conditions the implicit equation for the eigenvalues is

InA(z) ~ —In [p(0) (S*(0,2) —S7(0,2))] + /01 ST(t,z)dt
+1n [—ka1 — k22p(0)S™ (0, 2) + kup(1)ST(1,2) + k12p(1)p(0)57(0,z)8+(1,z)}

The large-z asymptotic behavior depends on whether k2 vanishes or not.
Both cases are described by the expression

MAG) = 3 np(O)p(1) + [1 = 6(kna)] Inkrav/p(0)p(1)
+ 5(k12) In (k22\/p(0) + k11 \/p(l))

1 [ee]
+ [2—=0(ki2)]lnz —In2z + z/ SH@dt+ Y
0

=1

N

f
zt

o The terms N;, i > 1, are expressed only in terms of p(™ (z) and V(")(w)
with n < i+ 1 and their powers.



Analytic Continuation of the Spectral Zeta Function

S
From the integral representation of C{C}(s) we add and subtract L leading
terms of the respective asymptotic expansions to obtain

C{g}() AL } ZA{ }

i=—1

S
with Z{g}(s) an analytic function for ®s > —(L 4 1)/2, and Ai{C}(S)
meromorphic functions for s € C. In particular we have

S/ _ S sinws | 1 —0(A2) — 0(B2)
Clo) =2t [ 25 25—1/5+ fdt - Z’zs+z

)
™

L
C/ N ,C sinws [ 1— 0(k12) 1 /1 " B . N
Cle)=27(s) + [ 25 T2s—1 ), St ;12254—@'

™

e (5(s ) and ¢€(s) are meromorphic functions of s € C with only a simple
pole at s =1/2.



Functional Determinant and Heat Kernel Coefficients

From the analytically continued expression of the spectral zeta function one
can compute

e The functional determinant, det(£) = exp{—¢’(0)}.
e The coefficients of the asymptotic expansion of 8(t) = Trg2e .
For the HKC, by using the Mellin transform one has
a1_,=T(s)Res¢(s), ai,,= ﬂ((—n)
27 R n! '

when s =1/2 and s = —(2n + 1)/2 with n € No. In our case we have

Sl 1 /1 dt
0—0Qay = 5= >
2V Jo +/p(t)
S 1- (5(A2) — (S(Bg) S o 1 S - 22"n'
“3 7 2 O = = Ty Mam s G = = O i Ment
(1(1j = L(ku) a(zj +1 = —#Nz ac = — 22nn! 2 1
3 2 0 My (m— )17 2me Ot T T T A

with m € Nt and n € No.



Further Research

The analysis outlined above represents the foundation for further research

e Analysis of the Casimir energy and force for a one-dimensional piston
modeled by a compact potential with separated or coupled boundary
conditions. Study of the behavior of the force as the boundary
conditions change.

o Generalize the technique presented here to study spectral functions for
Laplace operator on manifolds of the type I x N or I xy N with N
being a compact Riemannian manifold, and I = [a,b] C R. These
results could be applied to the analysis of the Casimir effect for
potential pistons with arbitrary cross-section.

e It would be particularly interesting to develop a method similar to the
one presented in this paper to obtain the analytic continuation of the
spectral zeta function for one-dimensional singular Sturm-Liouville
problems:

o The functions p(z) and V(z) become unbounded in the neighborhood of
the endpoints of I.

e The interval I = R is unbounded and the potential V(z) — 400, as
|z| — oo, is confining.



