Name
MATH 221
Exam 1, Version B
Spring 2024
501
Solutions
P. Yasskin

Multiple Choice: (6 points each. No part credit.)

$1-8$	$/ 48$	11	$/ 12$
9	$/ 20$	12	$/ 12$
10	$/ 12$	Total	$/ 104$

1. A point has spherical coordinates $(\rho, \phi, \theta)=\left(6, \frac{\pi}{6}, \frac{\pi}{4}\right)$. Find its cylindrical coordinates.
a. $(r, \theta, z)=\left(3, \frac{\pi}{6}, 3 \sqrt{3}\right)$
b. $(r, \theta, z)=\left(3, \frac{\pi}{6}, 6 \sqrt{3}\right)$
c. $(r, \theta, z)=\left(3, \frac{\pi}{4}, 3 \sqrt{3}\right)$ Correct
d. $(r, \theta, z)=\left(6 \sqrt{3}, \frac{\pi}{6}, 3\right)$
e. $(r, \theta, z)=\left(3 \sqrt{3}, \frac{\pi}{4}, 3\right)$

Solution:

$z=\rho \cos \phi=6 \cos \frac{\pi}{6}=6 \frac{\sqrt{3}}{2}=3 \sqrt{3} \quad r=\rho \sin \phi=6 \frac{1}{2}=3 \quad(r, \theta, z)=\left(3, \frac{\pi}{4}, 3 \sqrt{3}\right)$
2. Which of the following is the contour plot of the function $f(x, y)=(x-2)^{4}+(y-3)^{4}$?
a.

b.

c.

d.

e.

Solution: The function is everywhere positive except at $(x, y)=(2,3)$ where it is 0 .
So $(2,3)$ is a local minimum. Contours circle around a minimum or maximum. So (b) is the answer.
3. A hiker starts at the point $P=(4,2)$, travels along the vector $\vec{a}=\langle 2,-2\rangle$, then along the vector $\vec{b}=\langle 1,3\rangle$ and finally along the vector $\vec{c}=\langle-1,2\rangle$. Along what vector should the hiker travel to get back to the starting point P ?
a. $\langle 2,3\rangle$
b. $\langle-6,-5\rangle$
c. $\langle 6,5\rangle$
d. $\langle-2,-3\rangle$ Correct
e. $\langle 2,-1\rangle$

Solution: In total the hiker travels along the vector $\vec{v}=\vec{a}+\vec{b}+\vec{c}=\langle 2,-2\rangle+\langle 1,3\rangle+\langle-1,2\rangle=\langle 2,3\rangle$. To get back the hiker must travel along $-\vec{v}=\langle-2,-3\rangle$. The point P is irrelevant.
4. For what value of p is $\vec{u}=\langle p, 5,3\rangle$ perpendicular to $\vec{v}=\langle 2,1, p\rangle$?
a. $p=2$
b. $p=1$
c. $p=0$
d. $p=-1 \quad$ Correct
e. $p=-2$

Solution: They are perpendicular if their dot product is 0 .
$\vec{u} \cdot \vec{v}=\langle p, 5,3\rangle \cdot\langle 2,1, p\rangle=2 p+5+3 p=5 p+5=0 \quad$ for $p=-1$
5. Find the volume of the parallelepiped with edge vectors $\vec{a}=\langle 4,2,0\rangle, \vec{b}=\langle 1,0,-3\rangle$ and $\vec{c}=\langle 0,-1,2\rangle$.
a. 16

Correct
b. 12
c. 8
d. -12
e. -16

Solution: $\vec{a} \cdot \vec{b} \times \vec{c}=\left|\begin{array}{ccc}4 & 2 & 0 \\ 1 & 0 & -3 \\ 0 & -1 & 2\end{array}\right|=4(0-3)-2(2-0)+0(-1-0)=-16$
Volume $=|\vec{a} \cdot \vec{b} \times \vec{c}|=|-16|=16$
6. If \hat{T} points Up and \hat{B} points NorthEast, in what direction does \hat{N} point?
a. Down
b. NorthWest
c. SouthEast Correct
d. SouthWest
e.

Solution: $\quad \hat{N}=\hat{B} \times \hat{T}$ If the fingers of your right hand point NorthEast along \hat{B} and the palm faces Up toward \hat{T}, then your thumb points SouthEast along \hat{N}.
7. Which of the following is a plane perpendicular to the line $(x, y, z)=(1+3 t, 3+2 t, 4-t)$?
a. $3 x+2 y-z=7$ Correct
b. $-3 x+2 y+z=2$
c. $x+3 y+4 z=5$
d. $3 x-2 y-z=3$
e. $x-3 y+4 z=5$

Solution: The normal to the plane is the direction of the line: $\vec{N}=\vec{v}=\langle 3,2,-1\rangle$. Any plane with this normal has the form $\vec{N} \cdot X=\vec{N} \cdot P$, or $3 x+2 y-z=D$.
8. Classify the quadratic surface: $-x^{2}+2 x+y^{2}+4 y-2 z^{2}+12 z=14$
a. Hyperboloid of 1 sheet Correct
b. Hyperboloid of 2 sheets
c. Hyperbolic Paraboloid opening up in the x-direction and down in the y-direction
d. Hyperbolic Paraboloid opening up in the y-direction and down in the x-direction
e. Cone

Solution: We complete the squares on x, y and z :
$-\left(x^{2}-2 x\right)+\left(y^{2}+4 y\right)-2\left(z^{2}-6 z\right)=14$
$-\left(x^{2}-2 x+1\right)+\left(y^{2}+4 y+4\right)-2\left(z^{2}-6 z+9\right)=14-1+4-18=-1$ $-(x-1)^{2}+(y+2)^{2}-2(z-3)^{2}=-1$
To get the standard form (with a 1 on the right), we multiply by -1 : $(x-1)^{2}-(y+2)^{2}+2(z-3)^{2}=1$ This is a hyperboloid of 1 sheet.
9. (20 pts) Consider the twisted cubic $\vec{r}=\left(6 t, 3 t^{2}, t^{3}\right)$. Compute each of the following. Note: $\quad 4+4 t^{2}+t^{4}=\left(2+t^{2}\right)^{2}$
a. (6 pts) Arc length between $(0,0,0)$ and $(6,3,1)$.

Solution: $\vec{v}=\left\langle 6,6 t, 3 t^{2}\right\rangle \quad|\vec{v}|=\sqrt{36+36 t^{2}+9 t^{4}}=3 \sqrt{4+4 t^{2}+t^{4}}=3 \sqrt{\left(2+t^{2}\right)^{2}}=3\left(2+t^{2}\right)$
$L=\int_{0}^{1}|\vec{v}| d t=\int_{0}^{1} 3\left(2+t^{2}\right) d t=3\left[2 t+\frac{t^{3}}{3}\right]_{0}^{1}=3\left[2+\frac{1}{3}\right]=7$
b. (6 pts) Curvature $\kappa=\frac{|\vec{v} \times \vec{a}|}{|\vec{v}|^{3}}$.

HINT: Factor out an 18^{2}.
Solution: $\vec{a}=\langle 0,6,6 t\rangle \quad \vec{v} \times \vec{a}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 6 & 6 t & 3 t^{2} \\ 0 & 6 & 6 t\end{array}\right|=\left\langle 36 t^{2}-18 t^{2},-36 t, 36\right\rangle=\left\langle 18 t^{2},-36 t, 36\right\rangle$
$|\vec{v} \times \vec{a}|=\sqrt{18^{2} t^{4}+36^{2} t^{2}+36^{2}}=18 \sqrt{t^{4}+4 t^{2}+4}=18 \sqrt{\left(2+t^{2}\right)^{2}}=18\left(2+t^{2}\right)$
$\kappa=\frac{|\vec{v} \times \vec{a}|}{|\vec{v}|^{3}}=\frac{18\left(2+t^{2}\right)}{3^{3}\left(2+t^{2}\right)^{3}}=\frac{2}{3\left(2+t^{2}\right)^{2}}$
c. (4 pts) Tangential acceleration, a_{T}.

HINT: You do NOT need to compute \hat{T}, \hat{N} or \hat{B}.
Solution: $\quad a_{T}=\frac{d}{d t}|\vec{v}|=\frac{d}{d t} 3\left(2+t^{2}\right)=6 t$
d. (4 pts) Normal acceleration, a_{N}.

HINT: You do NOT need to compute \hat{T}, \hat{N} or \hat{B}.
Solution: $\quad a_{n}=\kappa|\vec{v}|^{2}=\frac{2}{3\left(2+t^{2}\right)^{2}} 3^{2}\left(2+t^{2}\right)^{2}=6$
10. (12 pts) Write the vector, $\vec{a}=\langle 5,1,-3\rangle$, as a sum of two vectors \vec{p} and \vec{q}, where \vec{p} is parallel to $\vec{b}=\langle 6,4,2\rangle$ and \vec{q} is perpendicular to \vec{b}.

Solution: $\vec{p}=\operatorname{proj}_{\vec{b}} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^{2}} \vec{b}=\frac{30+4-6}{36+16+4}\langle 6,4,2\rangle=\frac{28}{56}\langle 6,4,2\rangle=\frac{1}{2}\langle 6,4,2\rangle=\langle 3,2,1\rangle$
$\vec{q}=\vec{a}-\vec{p}=\langle 5,1,-3\rangle-\langle 3,2,1\rangle=\langle 2,-1,-4\rangle$
We check $\vec{p}+\vec{q}=\langle 3,2,1\rangle+\langle 2,-1,-4\rangle=\langle 5,1,-3\rangle=\vec{a}$
$\vec{p} \| \vec{b}$ because $\vec{p}=\langle 3,2,1\rangle$ is a multiple of $\vec{b}=\langle 6,4,2\rangle$.
$\vec{q} \perp \vec{b}$ becaues $\vec{q} \cdot \vec{b}=12-4-8=0$
11. (12 pts) Consider the helix $\vec{r}(\theta)=\langle 3 \cos \theta, 3 \sin \theta, 4 \theta\rangle$ for $0 \leq \theta \leq 2 \pi$.
a. Find its mass, if its linear density is $\delta(x, y, z)=z$.

Solution: The velocity is $\vec{v}=\langle-3 \sin \theta, 3 \cos \theta, 4\rangle$.
The speed is $|\vec{v}|=\sqrt{9 \sin ^{2} \theta+9 \cos ^{2} \theta+16}=5$.
The density along the curve is $\delta=z=4 \theta$. So the mass is

$$
M=\int_{0}^{2 \pi} \delta|\vec{v}| d t=\int_{0}^{2 \pi} 4 \theta 5 d \theta=20\left[\frac{\theta^{2}}{2}\right]_{0}^{2 \pi}=10\left(4 \pi^{2}\right)=40 \pi^{2}
$$

b. Find the work done to push a bead along the helix if the force is $\vec{F}=\langle-2 y, 2 x, 0\rangle$.

Solution: Along the curve the force is $\vec{F}=\langle-6 \sin \theta, 6 \cos \theta, 0\rangle$. So the work is

$$
W=\int_{0}^{2 \pi} \vec{F} \cdot d \vec{s}=\int_{0}^{2 \pi} \vec{F} \cdot \vec{v} d \theta=\int_{0}^{2 \pi}\left(18 \sin ^{2} \theta+18 \cos ^{2} \theta\right) d \theta=\int_{0}^{2 \pi} 18 d \theta=36 \pi
$$

12. (12 pts) Consider the planes:

$$
\begin{array}{rr}
P_{1}: & x+3 y+3 z=5 \\
P_{2}: & x+y-z=3
\end{array}
$$

Determine if they are parallel or intersecting. If they intersect, find the line of intersection. You MUST explain why they are or are not parallel.

Solution: The normal vectors are $\vec{N}_{1}=\langle 1,3,3\rangle$ and $\vec{N}_{2}=\langle 1,1,-1\rangle$.
Since these are not multiples of each other, the planes are not parallel.
The direction of the line of intersection is the cross product of the normals:
$\vec{v}=\vec{N}_{1} \times \vec{N}_{2}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 3 & 3 \\ 1 & 1 & -1\end{array}\right|=\hat{\imath}(-3-3)-\hat{\jmath}(-1-3)+\hat{k}(1-3)=\langle-6,4,-2\rangle$
To find a point of intersection, we pick $z=0$ and solve:

$$
\begin{gathered}
x+3 y=5 \\
x+y=3
\end{gathered}
$$

The line is: $\quad X=P+\vec{t} \quad(x, y, z)=(2,1,0)+t\langle-6,4,-2\rangle=(2-6 t, 1+4 t,-2 t)$
Other answers are possible.

