Name_ Spring 2024 **MATH 221** Exam 3, Version A P. Yasskin 501

Multiple Choice: (9 points each. No part credit.) Circle you answers here and bubble on the Scantron. Show your work, in case I give some part credit.

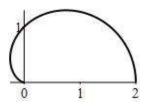
1-6	/54
7	/20
8	/15
9	/15
Total	/104

- 1. Compute $\int_0^2 \int_p^{2p} pq \, dq \, dp.$
 - **a**. 4
 - **b**. 6
 - **c**. 8
 - **d**. 12
 - **e**. 24

- **2**. Approximate the integral $\int_{2}^{6} \int_{1}^{5} (x^2 + y) dy dx$ by a Riemann sum using 4 squares and evaluating at the center of each square.
 - **a**. 320

 - **b.** $\frac{976}{3}$ **c.** $\frac{488}{3}$
 - **d**. 160
 - **e**. 80

3. Find the area of the interior of the upper half of the cardioid $r = 1 + \cos \theta$.



- **a**. $A = \pi$
- **b**. $A = 2\pi$
- **c**. $A = \frac{2}{3\pi}$
- **d**. $A = \frac{3\pi}{4}$
- **e**. $A = \frac{3\pi}{2}$

- **4**. Find the average value of the function f(x,y) = y on the interior of the upper half of the cardioid $r = 1 + \cos \theta$ as shown in problem 3.
 - **a**. $f_{\text{ave}} = \frac{3}{4}$
 - **b**. $f_{ave} = \frac{4}{3}$
 - **c**. $f_{\text{ave}} = \frac{4}{9\pi}$
 - **d**. $f_{\text{ave}} = \frac{9\pi}{16}$
 - **e**. $f_{\text{ave}} = \frac{16}{9\pi}$

5. Find the volume of the apple given in spherical coordinates by $\rho = 1 - \cos \phi$.

- **a**. $\frac{4\pi}{5}$
- **b**. $\frac{8\pi}{5}$
- **c**. $\frac{4\pi}{3}$
- **d**. $\frac{8\pi}{3}$
- **e**. $2\pi^2$

- **6**. Find the surface area of the parametric surface parametrized by $\vec{R}(u,v) = \langle u+v, u-v, 2u+2v \rangle$ for $0 \le u \le 2$ and $0 \le v \le 3$.
 - **a**. 36
 - **b**. 6
 - **c**. $2\sqrt{5}$
 - **d**. $6\sqrt{5}$
 - **e**. $12\sqrt{5}$

Work Out: (Points indicated. Part credit possible. Show all work.)

- 7. (20 points) Consider the region between the y-axis and the parabola $x = 9 y^2$.
 - **a**. Find the mass of the region, if the surface density is $\delta = y^2$.

b. Find the center of mass of the region, if the surface density is $\delta = y^2$. Write your answer as an ordered pair.

8. (15 points) Compute $\iiint_P \vec{\nabla} \cdot \vec{F} dV$ for $\vec{F} = \langle xz, yz, z^2 \rangle$ over the solid above the paraboloid $z = x^2 + y^2$ below the plane z = 4.

9. (15 points) Compute $\iint_P \vec{\nabla} \times \vec{F} \cdot d\vec{S}$ for $\vec{F} = \langle -yz, xz, z^2 \rangle$ over the parabolic surface $z = x^2 + y^2$ below z = 4 oriented down and out. It may be parametrized by $\vec{R}(r,\theta) = \langle r\cos\theta, r\sin\theta, r^2 \rangle$

